Asparagine synthetase (ASNS) catalyses the ATP-dependent conversion of aspartate to asparagine. However, both the regulation and biological functions of asparagine in tumour cells remain largely unknown. Here, we report that p53 suppresses asparagine synthesis through the transcriptional downregulation of ASNS expression and disrupts asparagine-aspartate homeostasis, leading to lymphoma and colon tumour growth inhibition in vivo and in vitro. Moreover, the removal of asparagine from culture medium or the inhibition of ASNS impairs cell proliferation and induces p53/p21-dependent senescence and cell cycle arrest. Mechanistically, asparagine and aspartate regulate AMPK-mediated p53 activation by physically binding to LKB1 and oppositely modulating LKB1 activity. Thus, we found that p53 regulates asparagine metabolism and dictates cell survival by generating an auto-amplification loop via asparagine-aspartate-mediated LKB1-AMPK signalling. Our findings highlight a role for LKB1 in sensing asparagine and aspartate and connect asparagine metabolism to the cellular signalling transduction network that modulates cell survival.
Recent studies have revealed that the oxidative entosehosphate athway (PPP), malic enzyme (ME), and folate metabolism are the three major routes for generating cellular NADPH, a key cofactor involved in redox control and reductive biosynthesis. Many tumor cells exhibit altered NADPH metabolism to fuel their rapid proliferation. However, little is known about how NADPH metabolism is coordinated in tumor cells. Here we report that ME1 increases the PPP flux by forming physiological complexes with 6-phosphogluconate dehydrogenase (6PGD). We found that ME1 and 6PGD form a hetero-oligomer that increases the capability of 6PGD to bind its substrate 6-phosphogluconate. Through activating 6PGD, ME1 enhances NADPH generation, PPP flux, and tumor cell growth. Interestingly, although ME1 could bind either the dimer-defect mutant 6PGD (K294R) or the NADP-binding defect 6PGD mutants, only 6PGD (K294R) activity was induced by ME1. Thus, ME1/6PGD hetero-complexes may mimic the active oligomer form of 6PGD. Together, these findings uncover a direct cross-talk mechanism between ME1 and PPP, may reveal an alternative model for signaling transduction via protein conformational simulation, and pave the way for better understanding how metabolic pathways are coordinated in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.