Herein, we propose a novel indoor structure extraction (ISE) method that can reconstruct an indoor planar structure with a feature structure map (FSM) and enable indoor robot navigation using a navigation structure map (NSM). To construct the FSM, we first propose a two-staged region growing algorithm to segment the planar feature and to obtain the original planar point cloud. Subsequently, we simplify the planar feature using quadtree segmentation based on cluster fusion. Finally, we perform simple triangulation in the interior and vertex-assignment triangulation in the boundary to accomplish feature reconstruction for the planar structure. The FSM is organized in the form of a mesh model. To construct the NSM, we first propose a novel ground extraction method based on indoor structure analysis under the Manhattan world assumption. It can accurately capture the ground plane in an indoor scene. Subsequently, we establish a passable area map (PAM) within different heights. Finally, a novel-form NSM is established using the original planar point cloud and the PAM. Experiments are performed using three public datasets and one self-collected dataset. The proposed plane segmentation approach is evaluated on two simulation datasets and achieves a recall of approximately 99%, which is 5% higher than that of the traditional plane segmentation method. Furthermore, the triangulation performance of our method compared with the traditional greedy projection triangulation show that our method performs better in terms of feature representation. The experimental results reveal that our ISE method is robust and effective for extracting indoor structures.
Reducing the cumulative error is a crucial task in simultaneous localization and mapping (SLAM). Usually, Loop Closure Detection (LCD) is exploited to accomplish this work for SLAM and robot navigation. With a fast and accurate loop detection, it can significantly improve global localization stability and reduce mapping errors. However, the LCD task based on point cloud still has some problems, such as over-reliance on high-resolution sensors, and poor detection efficiency and accuracy. Therefore, in this paper, we propose a novel and fast global LCD method using a low-cost 16 beam Lidar based on “Simplified Structure”. Firstly, we extract the “Simplified Structure” from the indoor point cloud, classify them into two levels, and manage the “Simplified Structure” hierarchically according to its structure salience. The “Simplified Structure” has simple feature geometry and can be exploited to capture the indoor stable structures. Secondly, we analyze the point cloud registration suitability with a pre-match, and present a hierarchical matching strategy with multiple geometric constraints in Euclidean Space to match two scans. Finally, we construct a multi-state loop evaluation model for a multi-level structure to determine whether the two candidate scans are a loop. In fact, our method also provides a transformation for point cloud registration with “Simplified Structure” when a loop is detected successfully. Experiments are carried out on three types of indoor environment. A 16 beam Lidar is used to collect data. The experimental results demonstrate that our method can detect global loop closures efficiently and accurately. The average global LCD precision, accuracy and negative are approximately 0.90, 0.96, and 0.97, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.