The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite‐borne, and ground‐based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at a catchment scale. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment and took place in the Heihe River Basin, a typical inland river basin in the northwest of China. The field campaigns have been completed, with an intensive observation period lasting from 7 March to 12 April, from 15 May to 22 July, and from 23 August to 5 September 2008: in total, 120 days. Twenty‐five airborne missions were flown. Airborne sensors including microwave radiometers at L, K, and Ka bands, imaging spectrometer, thermal imager, CCD, and lidar were used. Various satellite data were collected. Ground measurements were carried out at four scales, that is, key experimental area, foci experimental area, experiment site, and elementary sampling plot, using ground‐based remote sensing instruments, densified network of automatic meteorological stations, flux towers, and hydrological stations. On the basis of these measurements, the remote sensing retrieval models and algorithms of water cycle variables are to be developed or improved, and a catchment‐scale land/hydrological data assimilation system is being developed. This paper reviews the background, scientific objectives, experiment design, filed campaign implementation, and current status of WATER. The analysis of the data will continue over the next 2 years, and limited revisits to the field are anticipated.
The Arabidopsis thaliana ascorbate-deficient vtc-1 mutant has only 30% ascorbate contents of the wild type (WT). This ascorbate-deficient mutant was used here to study the physiological roles of ascorbate under salt stress in vivo. Salt stress resulted in a more significant decrease in CO2 assimilatory capacity in the vtc-1 mutant than in the WT. Photosystem II function in the Arabidopsis vtc-1 mutant also showed an increased sensitivity to salt stress. Oxidative stress, indicated by the hydrogen peroxide content, increased more dramatically in the vtc-1 mutant than in the WT under salt stress. To clarify the reason for the increased oxidative stress in the vtc-1 mutant, the contents of small antioxidant compounds and the activities of several antioxidant enzymes in the ascorbate-glutathione cycle were measured. Despite an elevated glutathione pool in the vtc-1 mutant, the ascorbate contents and the reduced form of ascorbate decreased very rapidly under salt stress. These results showed that the activities of MDAR and DHAR were lower in the vtc-1 mutant than in the WT under salt stress. Thus, low intrinsic ascorbate and an impaired ascorbate-glutathione cycle in the vtc-1 mutant under salt stress probably induced a dramatic decrease in the reduced form of ascorbate, which resulted in both enhanced ROS contents and decreased NPQ in the vtc-1 mutant.
Ultrathin, molecular sieving membranes composed of microporous materials offer great potential to realize high permeances and selectivities in separation applications, but strategies for their production have remained a challenge. Here we show a route for the scalable production of nanometre-thick metal–organic framework (MOF) molecular sieving membranes, specifically via gel–vapour deposition, which combines sol–gel coating with vapour deposition for solvent-/modification-free and precursor-/time-saving synthesis. The uniform MOF membranes thus prepared have controllable thicknesses, down to ~17 nm, and show one to three orders of magnitude higher gas permeances than those of conventional membranes, up to 215.4 × 10−7 mol m−2 s−1 Pa−1 for H2, and H2/C3H8, CO2/C3H8 and C3H6/C3H8 selectivities of as high as 3,400, 1,030 and 70, respectively. We further demonstrate the in situ scale-up processing of a MOF membrane module (30 polymeric hollow fibres with membrane area of 340 cm2) without deterioration in selectivity.
The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.
This review presents and discusses the remarkable progress of GO membranes, especially the strategies and mechanisms for controlling their transport pathways in liquid separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.