Multi-label text classification (MLTC) aims to assign multiple labels to each sample in the dataset. The labels usually have internal correlations. However, traditional methods tend to ignore the correlations between labels. In order to capture the correlations between labels, the sequence-tosequence (Seq2Seq) model views the MLTC task as a sequence generation problem, which achieves excellent performance on this task. However, the Seq2Seq model is not suitable for the MLTC task in essence. The reason is that it requires humans to predefine the order of the output labels, while some of the output labels in the MLTC task are essentially an unordered set rather than an ordered sequence. This conflicts with the strict requirement of the Seq2Seq model for the label order. In this paper, we propose a novel sequence-toset framework utilizing deep reinforcement learning, which not only captures the correlations between labels, but also reduces the dependence on the label order. Extensive experimental results show that our proposed method outperforms the competitive baselines by a large margin.
Unsupervised text style transfer aims to transfer the underlying style of text but keep its main content unchanged without parallel data. Most existing methods typically follow two steps: first separating the content from the original style, and then fusing the content with the desired style. However, the separation in the first step is challenging because the content and style interact in subtle ways in natural language. Therefore, in this paper, we propose a dual reinforcement learning framework to directly transfer the style of the text via a one-step mapping model, without any separation of content and style. Specifically, we consider the learning of the source-to-target and targetto-source mappings as a dual task, and two rewards are designed based on such a dual structure to reflect the style accuracy and content preservation, respectively. In this way, the two one-step mapping models can be trained via reinforcement learning, without any use of parallel data. Automatic evaluations show that our model outperforms the state-of-the-art systems by a large margin, especially with more than 8 BLEU points improvement averaged on two benchmark datasets. Human evaluations also validate the effectiveness of our model in terms of style accuracy, content preservation and fluency. Our code and data, including outputs of all baselines and our model are available at https://github.com/luofuli/DualLanST. 1
Automatic topic-to-essay generation is a challenging task since it requires generating novel, diverse, and topic-consistent paragraph-level text with a set of topics as input. Previous work tends to perform essay generation based solely on the given topics while ignoring massive commonsense knowledge. However, this commonsense knowledge provides additional background information, which can help to generate essays that are more novel and diverse. Towards filling this gap, we propose to integrate commonsense from the external knowledge base into the generator through dynamic memory mechanism. Besides, the adversarial training based on a multi-label discriminator is employed to further improve topic-consistency. We also develop a series of automatic evaluation metrics to comprehensively assess the quality of the generated essay. Experiments show that with external commonsense knowledge and adversarial training, the generated essays are more novel, diverse, and topic-consistent than existing methods in terms of both automatic and human evaluation.
The visual storytelling (VST) task aims at generating a reasonable and coherent paragraph-level story with the image stream as input. Different from caption that is a direct and literal description of image content, the story in the VST task tends to contain plenty of imaginary concepts that do not appear in the image. This requires the AI agent to reason and associate with the imaginary concepts based on implicit commonsense knowledge to generate a reasonable story describing the image stream. Therefore, in this work, we present a commonsense-driven generative model, which aims to introduce crucial commonsense from the external knowledge base for visual storytelling. Our approach first extracts a set of candidate knowledge graphs from the knowledge base. Then, an elaborately designed vision-aware directional encoding schema is adopted to effectively integrate the most informative commonsense. Besides, we strive to maximize the semantic similarity within the output during decoding to enhance the coherence of the generated text. Results show that our approach can outperform the state-of-the-art systems by a large margin, which achieves a 29\% relative improvement of CIDEr score. With additional commonsense and semantic-relevance based objective, the generated stories are more diverse and coherent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.