We put forward a plan of improving the oblique-incidence optical interferometric system applied in the measurement of tooth flanks of an involute spur gear in order to expand its capability to measure an involute helical gear. On the basis of the features of an involute helical tooth flank, we discuss how to realize the parallelism between the optical axis of the object arm of the optical system and the straight lines constructing the involute helical tooth flank. This parallelism helps the optical system produce an interference fringe pattern as clear as the one of an involute spur gear [Appl. Opt.49, 6409 (2010).]. A numerical simulation is then performed to examine the correctness of the improvement. During simulating, we unify the equation of difference tooth flanks by means of importing two parameters in relation to the left or right side of a tooth flank and the helical direction of teeth, respectively. Finally, the actual experiment is fulfilled through the real optical system built on an optical table. The simulation and experiment results verify the correctness and feasibility of the proposed improvement.
For optical interferometry, a new quality-guided phase unwrapping algorithm based on the reliability evaluation of each pixel of the wrapped phase is proposed. First, the parameters used as quality measures in the past quality-guided algorithms are classified into the reliability measure and the quality measure, and the intensity of the object image belongs to the reliability measure. Then, by computing and applying a threshold to the intensity of the object image, the valid region (i.e., the interference region) is distinguished into the reliable region and the doubtful region. The wrapped phase in the reliable region is subsequently unwrapped by the way of multipaths integration, and different paths are guided by separate quality measures. Finally, starting from the reliable region, the doubtful region is unwrapped by the way that each path takes in the reliable region. Experimental results have shown that the proposed algorithm not only performs well, but also computes efficiently.
For the wrapped phase map with regional abnormal fringes, a new phase unwrapping algorithm that combines the image-inpainting theory and the quality-guided phase unwrapping algorithm is proposed. First, by applying a threshold to the modulation map, the valid region (i.e., the interference region) is divided into the doubtful region (called the target region during the inpainting period) and the reasonable one (the source region). The wrapped phase of the doubtful region is thought to be unreliable, and the data are abandoned temporarily. Using the region-filling image-inpainting method, the blank target region is filled with new data, while nothing is changed in the source region. A new wrapped phase map is generated, and then it is unwrapped with the quality-guided phase unwrapping algorithm. Finally, a postprocessing operation is proposed for the final result. Experimental results have shown that the performance of the proposed algorithm is effective.
A method to construct an unweighted quality map for phase extraction and phase unwrapping is proposed, based on an object image pattern. The object image pattern must be recorded under the same conditions as that of the corresponding interference patterns, except that the lights coming from the reference arm of the interferometer are hidden. An unweighted quality map that can represent the valid and invalid regions in the interference patterns is completed successfully, based on two factors: the fact that the object region in the object image pattern is homologous with the valid region (i.e., the interference region) in the interference patterns, and on distinguishing between the object and background regions in the object image pattern using neighbor window threshold filtering and fitting the boundary of the object image. The application of the proposed method to the real measurement shows its feasibility and correctness. This paper might provide an alternative method for constructing an unweighted quality map for phase extraction and phase unwrapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.