Dual-frequency capacitive discharges: Effect of low-frequency current on electron distribution function Phys. Plasmas 12, 053501 (2005); 10.1063/1.1888325Numerical study of argon ions transported across the sheath in electron cyclotron resonance discharges
Accurate identification of effective epidemic threshold is essential for understanding epidemic dynamics on complex networks. The existing studies on the effective epidemic threshold of the susceptible-infected-removed (SIR) model generally assume that all infected nodes immediately recover after the infection process, which more or less does not conform to the realistic situation of disease. In this paper, we systematically study the effect of arbitrary recovery rate on the SIR spreading dynamics on complex networks. We derive the theoretical effective epidemic threshold and final outbreak size based on the edge-based compartmental theory. To validate the proposed theoretical predictions, extensive numerical experiments are implemented by using asynchronous and synchronous updating methods. When asynchronous updating method is used in simulations, recovery rate does not affect the final state of spreading dynamics. But with synchronous updating, we find that the effective epidemic threshold decreases with recovery rate, and final outbreak size increases with recovery rate. A good agreement between the theoretical predictions and numerical results are observed on both synthetic and real-world networks. Our results extend the existing theoretical studies, and help us to understand the phase transition with arbitrary recovery rate. 64.60.Ht How to accurately predict the effective epidemic threshold has attracted increasing attentions. The existing studies on the epidemic threshold generally suppose the recovery process with a constant recovery rate of 1, while the investigation on the effect of recovery rate is still insufficient. Considering the difference of recovery rate between different real diseases and the accompanying effects on the human health, it is very necessary to predict the effective epidemic thresholds with different recovery rates. In this work, the effect of recovery rate on the effective threshold of epidemic outbreak is systematically studied. We first develop a novel theoretical framework based on the edge-based compartmental theory. The developed theory predicts that recovery rate does not affect the spreading dynamics with asynchronous updating, but with synchronous updating, the effective epidemic threshold decreases with the recovery rate, and the final outbreak sizes increases with the recovery rate for a given effective transmission rate. It should be noted that the SIR epidemic of synchronous updating breaks more easily than asynchronous updating. To verify the accuracy of the theoretical predictions, we numerically predict the effective epidemic threshold using the variability measure on random regular networks, where the numerical results agrees well with the theoretical predictions. Moreover, we investigate how the recovery rate affects the epidemic outbreaks with synchronous updating on scale-free networks and real-world networks, and find the same variation trend of effective epidemic threshold. * Electronic address:
The electron energy distribution function (EEDF), predicted by the Boltzmann equation solver BOLSIG+ based on the two-term approximation, is introduced into the fluid model for simulating the high-power microwave (HPM) breakdown in argon, nitrogen, and air, and its validity is examined by comparing with the results of particle-in-cell Monte Carlo collision (PIC/MCC) simulations as well as the experimental data. Numerical results show that, the breakdown time of the fluid model with the Maxwellian EEDF matches that of the PIC/MCC simulations in nitrogen; however, in argon under high pressures, the results from the Maxwellian EEDF were poor. This is due to an overestimation of the energy tail of the Maxwellian EEDF in argon breakdown. The prediction of the fluid model with the BOLSIG+ EEDF, however, agrees very well with the PIC/MCC prediction in nitrogen and argon over a wide range of pressures. The accuracy of the fluid model with the BOLSIG+ EEDF is also verified by the experimental results of the air breakdown.
Although an increasing amount of research is being done on the dynamical processes on interdependent spatial networks, knowledge of how interdependent spatial networks influence the dynamics of social contagion in them is sparse. Here we present a novel non-Markovian social contagion model on interdependent spatial networks composed of two identical two-dimensional lattices. We compare the dynamics of social contagion on networks with different fractions of dependency links and find that the density of final recovered nodes increases as the number of dependency links is increased. We use a finite-size analysis method to identify the type of phase transition in the giant connected components (GCC) of the final adopted nodes and find that as we increase the fraction of dependency links, the phase transition switches from second-order to first-order. In strong interdependent spatial networks with abundant dependency links, increasing the fraction of initial adopted nodes can induce the switch from a first-order to second-order phase transition associated with social contagion dynamics. In networks with a small number of dependency links, the phase transition remains second-order. In addition, both the second-order and first-order phase transition points can be decreased by increasing the fraction of dependency links or the number of initially-adopted nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.