Nowadays, more and more customers browse and purchase products in favor of using mobile E-Commerce Apps such as Taobao and Amazon. Since merchants are usually inclined to describe redundant and over-informative product titles to attract attentions from customers, it is important to concisely display short product titles on limited screen of mobile phones. To address this discrepancy, previous studies mainly consider textual information of long product titles and lacks of human-like view during training and evaluation process. In this paper, we propose a Multi-Modal Generative Adversarial Network (MM-GAN) for short product title generation in E-Commerce, which innovatively incorporates image information and attribute tags from product, as well as textual information from original long titles. MM-GAN poses short title generation as a reinforcement learning process, where the generated titles are evaluated by the discriminator in a human-like view. Extensive experiments on a large-scale E-Commerce dataset demonstrate that our algorithm outperforms other state-of-the-art methods. Moreover, we deploy our model into a real-world online E-Commerce environment and effectively boost the performance of click through rate and click conversion rate by 1.66% and 1.87%, respectively.
In online shopping, ever-changing fashion trends make merchants need to prepare more differentiated products to meet the diversified demands, and e-commerce platforms need to capture the market trend with a prophetic vision. For the trend prediction, the attribute tags, as the essential description of items, can genuinely reflect the decision basis of consumers. However, few existing works explore the attribute trend in the specific community for e-commerce. In this paper, we focus on the community trend prediction on the item attribute and propose a unified framework that combines the dynamic evolution of two graph patterns to predict the attribute trend in a specific community. Specifically, we first design a communityattribute bipartite graph at each time step to learn the collaboration of different communities. Next, we transform the bipartite graph into a hypergraph to exploit the associations of different attribute tags in one community. Lastly, we introduce a dynamic evolution component based on the recurrent neural networks to capture the fashion trend of attribute tags. Extensive experiments on three real-world datasets in a large e-commerce platform show the superiority of the proposed approach over several strong alternatives and demonstrate the ability to discover the community trend in advance. CCS CONCEPTS• Applied computing → Electronic commerce; • Information systems → Evaluation of retrieval results.
Helpful reviews in e-commerce sites can help customers acquire detailed information about a certain item, thus affecting customers' buying decisions. Predicting review helpfulness automatically in Taobao is an essential but challenging task for two reasons: (1) whether a review is helpful not only relies on its text, but also is related with the corresponding item and the user who posts the review, (2) the criteria of classifying review helpfulness under different items are not the same. To handle these two challenges, we propose CA-GNN (Category-Aware Graph N eural N etworks), which uses graph neural networks (GNNs) to identify helpful reviews in a multi-task manner-we employ GNNs with one shared and many item-specific graph convolutions to learn the common features and each item's specific criterion for classifying reviews simultaneously. To reduce the number of parameters in CA-GNN and further boost its performance, we partition the items into several clusters according to their category information, such that items in one cluster share a common graph convolution.We conduct solid experiments on two public datasets and demonstrate that CA-GNN outperforms existing methods by up to 10.9% in AUC. We also deployed our system in Taobao with online A/B Test and verify that CA-GNN still outperforms the baseline system in most cases. CCS CONCEPTS • Information systems → Data mining; Electronic commerce; • Computing methodologies → Supervised learning; • Applied computing → Document management and text processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.