Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are of importance to these processes1. While much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism2,3, little is understood about the role of fibroblast growth factors (FGFs) in this context4. Here we identify FGF receptor (FGFR) signaling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signaling inputs results in decreased glycolysis leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/r3 double mutant mice while HK2 overexpression partially rescues the defects caused by suppression of FGF signaling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.
The PAR-3͞PAR-6͞atypical PKC (aPKC) complex is required for axon-dendrite specification of hippocampal neurons. However, the downstream effectors of this complex are not well defined. In this article, we report a role for microtubule affinity-regulating kinase (MARK)͞PAR-1 in axon-dendrite specification. Knocking down MARK2 expression with small interfering RNAs induced formation of multiple axon-like neurites and promoted axon outgrowth. Ectopic expression of MARK2 caused phosphorylation of tau (S262) and led to loss of axons, and this phenotype was rescued by expression of PAR-3, PAR-6, and aPKC. In contrast, the polarity defects caused by an MARK2 mutant (T595A), which is not responsive to aPKC, were not rescued by the PAR-3͞PAR-6͞aPKC complex. Moreover, polarity was abrogated in neurons overexpressing a mutant of MARK2 with a deleted kinase domain but an intact aPKC-binding domain. Finally, suppression of MARK2 rescued the polarity defects induced by a dominant-negative aPKC mutant. These results suggest that MARK2 is involved in neuronal polarization and functions downstream of the PAR-3͞PAR-6͞aPKC complex. We propose that aPKC in complex with PAR-3͞PAR-6 negatively regulates MARK(s), which in turn causes dephosphorylation of microtubule-associated proteins, such as tau, leading to the assembly of microtubules and elongation of axons.polarity complex ͉ partition-defective protein 1b ͉ axon specification
Background Arteriogenesis and collateral formation are complex processes requiring integration of multiple inputs to coordinate vessel branching, growth, maturation and network size. Factors regulating these processes have not been determined. Methods and Results We used a dominant-negative IκBαSR construct under control of an endothelial-specific inducible promoter to selectively suppress endothelial NFκB activation during development or in the adult vasculature or in vitro. Inhibition of NFκB activation resulted in formation of an excessively branched arterial network that was composed of immature vessels and provided poor distal tissue perfusion. Molecular analysis demonstrated reduced adhesion molecules expression leading to decreased monocyte influx, reduced HIF-1α levels and a marked decrease in Dll4 expression with a consequent decrease in Notch signaling. The latter was the principal cause of increased vascular branching, as treatment with Jagged-1 peptide reduced the size of arterial network to baseline levels. Conclusions These findings identify NFκB as a key regulator of adult and developmental arteriogenesis and collateral formation. NFkB achieves this by regulating HIF1α-dependent expression of VEGF-A and PDGF-BB that are necessary for development and maturation of the arterial collateral network and by regulating Dll4 expression that in turn determines the network’s size and complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.