Ferrofluids are a type of nanometer-scale functional material with fluidity and superparamagnetism. They are composed of ferromagnetic particles, surfactants, and base liquids. The main characteristics of ferrofluids include magnetization, the magnetoviscous effect, and levitation characteristics. There are many mature commercial ferrofluid damping applications based on these characteristics that are widely used in numerous fields. Furthermore, some ferrofluid damping studies such as those related to vibration energy harvesters and biomedical devices are still in the laboratory stage. This review paper summarizes typical ferrofluid dampers and energy harvesting systems from the 1960s to the present, including ferrofluid viscous dampers, ferrofluid inertia dampers, tuned magnetic fluid dampers (TMFDs), and vibration energy harvesters. In particular, it focuses on TMFDs and vibration energy harvesters because they have been the hottest research topics in the ferrofluid damping field in recent years. This review also proposes a novel magnetic fluid damper that achieves energy conversion and improves the efficiency of vibration attenuation. Finally, we discuss the potential challenges and development of ferrofluid damping in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.