Lithium aluminoborate glasses have recently been found to undergo dramatic changes in their short-range structures upon compression at moderate pressure (~1 GPa), most notably manifested in an increase in network forming cation coordination number (CN). This has important consequences for their mechanical behavior,
Developing less brittle oxide glasses is a grand challenge in the field of glass science and technology, as it would pave the way toward new glass applications and limit the overall raw material usage and energy consumption. However, in order to achieve this goal, more insight into the correlation between the chemical composition and material properties is required. In this work, we focus on the mechanical properties of quaternary sodium aluminoborosilicate glasses, wherein systematic changes in glass chemistry yield different resistances to indentation crack initiation. We discuss the origin of the composition dependence of indentation cracking based on an evaluation of the deformation mechanism taking place during the indentation event. To this end, we use a simple metric, the extent of indent side length recovery upon annealing, to quantify the extent of reversible volume deformation. Finally, we also compare the compositional trend in crack initiation resistance to that in crack growth resistance (fracture toughness), showing no simple correlation among the two.
Lithium aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation, but suffer from relatively low hardness and chemical durability. To further understand the mechanical properties of this glass family and their correlation with the network structure, we here study the effect of adding SiO2 to a 25Li2O–20Al2O3–55B2O3 glass on the structure and mechanical properties. Addition of silica increases the average network rigidity, but meanwhile its open tetrahedral structure decreases the atomic packing density. Consequently, we only observe a minor increase in hardness and glass transition temperature, and a decrease in Poisson's ratio. The addition of SiO2, and thus removal of Al2O3 and/or B2O3, also makes the network less structurally adaptive to applied stress, since Al and B easily increase their coordination number under pressure, while this is not the case for Si under modest pressures. As such, although the silica‐containing networks have more free volume, they cannot densify more during indentation, which in turn leads to an overall decrease in crack resistance upon SiO2 addition. Our work shows that, although pure silica glass has very high glass transition temperature and relatively high hardness, its addition in oxide glasses does not necessarily lead to significant increase in these properties due to the complex structural interactions in mixed network former glasses and the competitive effects of free volume and network rigidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.