Accurate and timely fault diagnosis for the diesel engine is crucial to guarantee it works safely and reliably, and reduces the maintenance costs. A novel diagnosis method based on variational mode decomposition (VMD) and kernel-based fuzzy c-means clustering (KFCM) is proposed in this paper. Firstly, the VMD algorithm is optimized to select the most suitable K value adaptively. Then KFCM is employed to classify the feature parameters of intrinsic mode functions (IMFs). Through the comparison of many different parameters, the singular value is selected finally because of the good classification effect. In this paper, the diesel engine fault simulation experiment was carried out to simulate various faults including valve clearance fault, fuel supply fault and common rail pressure fault. Each kind of machine fault varies in different degrees. To prove the effectiveness of VMD-KFCM, the proposed method is compared with empirical mode decomposition (EMD)-KFCM, ensemble empirical mode decomposition (EEMD)-KFCM, VMD-back propagation neural network (BPNN), and VMD-deep belief network (DBN). Results show that VMD-KFCM has advantages in accuracy, simplicity, and efficiency. Therefore, the method proposed in this paper can be used for diesel engine fault diagnosis, and has good application prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.