PurposeThe purpose of the study was to build an AI model with selected preoperative clinical features to further improve the accuracy of the assessment of benign and malignant breast nodules.MethodsPatients who underwent ultrasound, strain elastography, and S-Detect before ultrasound-guided biopsy or surgical excision were enrolled. The diagnosis model was built using a logistic regression model. The diagnostic performances of different models were evaluated and compared.ResultsA total of 179 lesions (101 benign and 78 malignant) were included. The whole dataset consisted of a training set (145 patients) and an independent test set (34 patients). The AI models constructed based on clinical features, ultrasound features, and strain elastography to predict and classify benign and malignant breast nodules had ROC AUCs of 0.87, 0.81, and 0.79 in the test set. The AUCs of the sonographer and S-Detect were 0.75 and 0.82, respectively, in the test set. The AUC of the combined AI model with the best performance was 0.89 in the test set. The combined AI model showed a better specificity of 0.92 than the other models. The sonographer’s assessment showed better sensitivity (0.97 in the test set).ConclusionThe combined AI model could improve the preoperative identification of benign and malignant breast masses and may reduce unnecessary breast biopsies.
BACKGROUND Computer-aided diagnosis (CAD) is a useful tool that can provide a reference for the differential diagnosis of benign and malignant breast lesion. Previous studies have demonstrated that CAD can improve the diagnostic performance. However, conventional ultrasound (US) combined with CAD were used to adjust the classification of category 4 lesions has been few assessed. OBJECTIVE The objective of our study was to evaluate the diagnosis performance of conventional ultrasound combined with a CAD system S-Detect in the category of BI-RADS 4 breast lesions. METHODS Between December 2018 and May 2020, we enrolled patients in this study who received conventional ultrasound and S-Detect before US-guided biopsy or surgical excision. The diagnostic performance was compared between US findings only and the combined use of US findings with S-Detect, which were correlated with pathology results. RESULTS A total of 98 patients (mean age 51.06 ±16.25 years, range 22-81) with 110 breast masses (mean size1.97±1.38cm, range0.6-8.5) were included in this study. Of the 110 breast masses, 64/110 (58.18%) were benign, 46/110 (41.82%) were malignant. Compared with conventional ultrasound, a significant increase in specificity (0% to 53.12%, P<.001), accuracy (41.81% to70.19%, P<.001) were noted, with no statistically significant decrease on sensitivity(100% to 95.65% ,P=.48). According to S-Detect-guided US BI-RADS re-classification, 30 out of 110 (27.27%) breast lesions underwent a correct change in clinical management, 74of 110 (67.27%) breast lesions underwent no change and 6 of 110 (5.45%) breast lesions underwent an incorrect change in clinical management. The biopsy rate decreased from 100% to 67.27 % (P<.001).Benign masses among subcategory 4a had higher rates of possibly benign assessment on S-Detect for the US only (60% to 0%, P<.001). CONCLUSIONS S-Detect can be used as an additional diagnostic tool to improve the specificity and accuracy in clinical practice. S-Detect have the potential to be used in downgrading benign masses misclassified as BI-RADS category 4 on US by radiologist, and may reduce unnecessary breast biopsy. CLINICALTRIAL none
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.