A winter Eurasian cooling trend and a large decline of winter sea ice concentration (SIC) in the Barents–Kara Seas (BKS) are striking features of recent climate changes. The question arises as to what extent these phenomena are related. A mechanism is presented that establishes a link between recent winter SIC decline and midlatitude cold extremes. Such potential weather linkages are mediated by whether there is a weak north–south gradient of background tropospheric potential vorticity (PV). A strong background PV gradient, which usually occurs in North Atlantic and Pacific Ocean midlatitudes, acts as a barrier that inhibits atmospheric blocking and southward cold air intrusion. Conversely, atmospheric blocking is more persistent in weakened PV gradient regions over Eurasia, Greenland, and northwestern North America because of weakened energy dispersion and intensified nonlinearity. The small climatological PV gradients over mid- to high-latitude Eurasia have become weaker in recent decades as BKS air temperatures show positive trends due to SIC loss, and this has led to more persistent high-latitude Ural-region blocking. These factors contribute to increased cold winter trend in East Asia. It is found, however, that in years when the winter PV gradient is small the East Asian cold extremes can even occur in the absence of large negative SIC anomalies. Thus, the magnitude of background PV gradient is an important controller of Arctic–midlatitude weather linkages, but it plays no role if Ural blocking is not present. Thus, the “PV barrier” concept presents a critical insight into the mechanism producing cold Eurasian extremes and is hypothesized to set up such Arctic–midlatitude linkages in other locations.
Occupying the upper troposphere over subtropical Eurasia during boreal summer, the South Asian high (SAH) is thought to be a regulator of the East Asian summer monsoon (EASM), which is particularly important for regional climate over Asia. However, there is feedback of the condensational heating associated with EASM precipitation to SAH variability. In this study, interannual variation of SAH intensity and the mechanisms are investigated. For strong SAH cases, the high pressure system intensifies and expands. Significant positive anomalies of the geopotential height and upper-tropospheric temperature were found over the Middle East and to the east of the Tibetan Plateau (TP), namely, the western and the eastern flanks of the SAH. The dynamical diagnosis and the numerical experiments consistently show that the interannual variation of SAH intensity is strongly affected by EASM precipitation over the eastern TP-Yangtze River valley. The feedback of the condensational heating anomaly to the SAH is summarized as follows: Excessive EASM heating excites a local anticyclone in the upper troposphere and warms the upper troposphere, leading to the eastward extension of the SAH's eastern edge and reinforcing geopotential height anomalies over East Asia. Furthermore, the monsoonal heating excites a westward-propagating Rossby wave that increases the upper-tropospheric geopotential height and warms the upper troposphere over the Middle East. In conclusion, this study suggests a mechanistic paradigm in which the EASM may also be a modulator of SAH variation rather than just a passive result of the latter as traditionally thought. The results suggest that the EASM and the SAH are a tightly interactive system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.