Rupture or erosion of inflammatory atherosclerotic vulnerable plaque is essential to acute coronary events, while the target intervene of vulnerable plaque is very challenging, due to the relatively small volume, high hemodynamic shear stress, and multifactorial nature of the lesion foci. Herein, we utilize the biological functionality of neutrophil and the versatility of microbubble in the acoustic field, to form Neu-balloon through CD11b antibody binding. The Neu-balloon inherits the advantage of neutrophils on firming the endothelium adhesion even at shear stress up to 16 dyne/cm2 and also maintains the acoustic enhancement property from the microbubble, to accumulate at atherosclerotic lesions under acoustic in an atherosclerotic Apo E-/- mice model. Interestingly, Neo-balloon also has high and broad drug loading capacity, which enables the delivery of indocyanine green and miR-126a-5p into vulnerable plagues in vivo. Overall, the bionic Neu-balloon holds great potential to boost on-demand drug transportation into plaques in vivo.
Background. Currently, echocardiography has become an essential technology for the diagnosis of cardiovascular diseases. Accurate classification of apical two-chamber (A2C), apical three-chamber (A3C), and apical four-chamber (A4C) views and the precise detection of the left ventricle can significantly reduce the workload of clinicians and improve the reproducibility of left ventricle segmentation. In addition, left ventricle detection is significant for the three-dimensional reconstruction of the heart chambers. Method. RetinaNet is a one-stage object detection algorithm that can achieve high accuracy and efficiency at the same time. RetinaNet is mainly composed of the residual network (ResNet), the feature pyramid network (FPN), and two fully convolutional networks (FCNs); one FCN is for the classification task, and the other is for the border regression task. Results. In this paper, we use the classification subnetwork to classify A2C, A3C, and A4C images and use the regression subnetworks to detect the left ventricle simultaneously. We display not only the position of the left ventricle on the test image but also the view category on the image, which will facilitate the diagnosis. We used the mean intersection-over-union (mIOU) as an index to measure the performance of left ventricle detection and the accuracy as an index to measure the effect of the classification of the three different views. Our study shows that both classification and detection effects are noteworthy. The classification accuracy rates of A2C, A3C, and A4C are 1.000, 0.935, and 0.989, respectively. The mIOU values of A2C, A3C, and A4C are 0.858, 0.794, and 0.838, respectively.
The Intravascular Ultrasound (IVUS) technology is an important imaging modality used in realistic clinical practice, it is often combined with coronary angiography (CAG) to diagnose coronary artery disease. As the golden standard for in vivo imaging of coronary artery walls, it can provide high-resolution images of the artery wall. Generally, the IVUS acquisition device uses an ultrasonic transducer to acquire the fine-grained anatomical information of the cardiovascular tissue by means of pulse echo imaging. However, widely used mechanical rotating imaging system suffered from guidewire artifacts. The inadequate visualization caused by artifacts often caused huge trouble for clinical diagnosis and subsequent tissue structure evaluation, and there is no suitable way to solve this long-standing problem so far. In this paper, we conducted an exploratory study and proposed the first deep learning based network named AIVUS for repairing the corrupted IVUS images. The network has a novel generative adversarial architecture, the united of gated convolution and spatiotemporal aggregation structure has been introduced to enhance its restoration capability. The proposed network can handle large-scale, moving guidewire artifacts, and it can fully utilize spatial and temporal information hidden in sequence to recover the high-fidelity original content and maintain consistency between frames. Furthermore, we compared it with several latest restoration models, including both image restoration and video restoration models. Qualitative and quantitative comparison results on the collected IVUS datasets demonstrate that our method has achieved outstanding performance and its potential clinical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.