To study the mass transport of mucociliary clearance of the human upper respiratory tract, a two-dimensional mass transport model based on the ciliated movement was established by using the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, different characteristics of the mucus layer (ML) and the periciliary liquid (PCL) were taken into account. A virtual elastic membrane was introduced to divide the two layers dynamically. All moving boundaries that were involved in the present simulation were modeled with the immersed boundary. The Newtonian fluid was used to model the flow in PCL, and the viscoelastic fluid based on the Oldroyd-B model was used for the flow in ML; the two types of flow were both solved by the LBM framework. Based on the model, the ML thickness, the cilia density, and the phase difference of adjacent cilia were regulated, respectively, to study the transport velocity of the ML. In addition, the motion law of solid particles in PCL was also studied. According to the results, four primary conclusions were drawn. (1) At a given beating pattern, the increase of the ML thickness will decrease its transport velocity. (2) Increasing the cilia density can promote the mean transport velocity of the ML. (3) By raising the phase difference of adjacent cilia to a certain scope, the transport of ML can be accelerated. (4) In PCL, particles initially located on the upper part of the cilia tend to migrate upward and then get close to the ML. The above study can provide some reasonable explanations for the mechanism of the mucociliary clearance system, which is also helpful to the further understanding of the mass transport principle of the human upper respiratory tract.
In this paper, a two-dimensional dynamic model of human respiratory cilia is established by immersed boundary-lattice Boltzmann method. In the model, periciliary liquid and mucus layer with different flow characteristics are considered, in which the non-Newtonian fluid in the viscous layer is described by Oldroyd-B model; the area between two layers is dynamically divided by a virtual membrane. By changing the cilium beat amplitude and the depth of periciliary liquid, this paper focuses on the removal of particle impurities by cilium beat. The results show that when the initial position is near the top of cilium, the particle tends to migrate upward to approach the mucus layer. However, if the initial position is near the middle or at lower part of the cilia, most of the particles will not be transferred to the vicinity of mucus layer by the swinging cilium. It is also found that by increasing the beat amplitude of cilia, particles are more likely to approach the mucus layer. By conducting this study, the migration of the particle in periciliary liquid is discussed in detail. The results are significant to help us to know the material transport law of human respiratory tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.