In this study, humic acid-coated Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)@HA MNPs) were synthesized using a chemical coprecipitation method and characterized in detail. The XRD analysis results showed that HA coating did not change the phase of Fe(3)O(4) cores. The TEM image suggested that Fe(3)O(4)@HA MNPs had nearly uniform size without the observation of aggregation. The Fe(3)O(4)@HA MNPs were stable in solution and could be easily separated from aqueous solution using a magnetic separation method. A batch technique was adopted to investigate the removal efficiency of Fe(3)O(4)@HA MNPs toward Eu(III) under various environmental conditions. The kinetic process of Eu(III) sorption on Fe(3)O(4)@HA MNPs reached equilibrium within <30 min. The fast sorption kinetics and high sorption amount were attributed to the plentiful surface sites provided by the surface-coated HA macromolecules. The Fe(3)O(4)@HA MNPs was able to remove ~99% of Eu(III) in aqueous solution at pH 8.5. Except for SO(4)(2-) anions, the coexisting electrolyte ions had no significant competition effects on the removal of Eu(III) by Fe(3)O(4)@HA MNPs. The obvious sorption-desorption hysteresis suggested that the removal of Eu(III) was dominated by inner-sphere surface complexation. The sorption isotherm agreed well with the Langmuir model, having a maximum sorption capacity of 6.95 × 10(-5) mol g(-1). The leaching test showed that the Eu(III)-loaded Fe(3)O(4)@HA colloids were capable to maintain high thermodynamic stability for long aging times. The findings herein suggested that Fe(3)O(4)@HA MNPs could be potentially used as a highly effective material for the enrichment and preconcentration of radionuclide Eu(III) or other trivalent lanthanides/actinides in geological repositories or in nuclear waste management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.