Hand motion classification using surface electromyography (sEMG) has been widely studied for its applications in upper-limb prosthesis and human-machine interface etc. Pattern-recognition based control methods have many advantages, and the reported classification accuracy can meet the requirements of practical applications. However, the pattern instability of sEMG in actual use limited their real implementations, and limb position variations may be one of the potential factors. In this paper, we give a pilot study of the reverse effect of forearm rotations on hand motion classification, and the results show that the forearm rotations can substantially degrade the classifier's performance: the average intra-position error is only 2.4%, but the average interposition classification error is as high as 44.0%. To solve this problem, we use an extra accelerometer to estimate the forearm rotation angles, and the best combination of sEMG data and accelerometer outputs can reduce the average classification error to 3.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.