Purpose
The purpose of this study is to reduce the use of Zinc dialkyl dithiophosphates (ZDDP) and improve the frictional properties and thermal oxidation stability of Perfluoropolyether (PFPE) grease by adding antioxidant additives. The addition of antioxidants can reduce the consumption of ZDDP as an antioxidant, thus improving the anti-wear efficiency of ZDDP and reducing the excess phosphorus element in the grease.
Design/methodology/approach
In this study, an antioxidant with good comprehensive performance was selected from several antioxidants by tribological tests and high-temperature tests. Then, the effect of its combination additive with ZDDP on PFPE grease was investigated. The anti-wear property, anti-friction property, thermal oxidation stability and extreme pressure property of greases containing different proportions of ZDDP and antioxidant were tested by four-ball tester and synchronous thermal analyzer (STA). The effects of additives on properties of grease were analyzed by SEM, EDS, LSCM, XPS and FT-IR.
Findings
The research shows that 2,6-Di-tert-butyl-4-methylphenol (BHT) can be used as an antioxidant in combined additives to reduce the antioxidant reactions of ZDDP, thus improving the anti-wear efficiency of ZDDP and further enhancing the anti-wear performance of the grease. Moreover, BHT and ZDDP have a synergistic effect on the high temperature performance of the PFPE grease due to their different antioxidant mechanisms.
Social implications
In this paper, the problems related to PFPE grease are studied, which has a certain guiding effect on the industrial application of fluorine grease and the related formulation design.
Originality/value
In this paper, the properties of PFPE grease under different lubricating condition were studied. The synergistic lubrication effect of antioxidant and ZDDP are discussed. It provides experimental and theoretical support for reducing the content of ZDDP and improving the performance of additives.
Graphene aerogels (GAs) combine the unique properties of two-dimensional graphene with the structural characteristics of microscale porous materials, exhibiting ultralight, ultra-strength, and ultra-tough properties. GAs are a type of promising carbon-based metamaterials suitable for harsh environments in aerospace, military, and energy-related fields. However, there are still some challenges in the application of graphene aerogel (GA) materials, which requires an in-depth understanding of the mechanical properties of GAs and the associated enhancement mechanisms. This review first presents experimental research works related to the mechanical properties of GAs in recent years and identifies the key parameters that dominate the mechanical properties of GAs in different situations. Then, simulation works on the mechanical properties of GAs are reviewed, the deformation mechanisms are discussed, and the advantages and limitations are summarized. Finally, an outlook on the potential directions and main challenges is provided for future studies in the mechanical properties of GA materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.