Face recognition using depth data has attracted increasing attention from both academia and industry in the past five years. Previous works show a huge performance gap between high-quality and low-quality depth data. Due to the lack of databases and reasonable evaluations on data quality, very few researchers have focused on boosting depth-based face recognition by enhancing data quality or feature representation. In the paper, we carefully collect a new database including high-quality 3D shapes, low-quality depth images and the corresponding color images of the faces of 902 subjects, which have long been missing in the area. With the database, we make a standard evaluation protocol and propose three strategies to train low-quality depth-based face recognition models with the help of high-quality depth data. Our training strategies could serve as baselines for future research, and their feasibility of boosting low-quality depth-based face recognition is validated by extensive experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.