During the cold season, like other high-altitude mammals, Tibetan sheep have to adapt their physiological and nutritional strategies, as well as the structure and function of their rumen microbial community, to the seasonal variation of lower food availability and quality. This study focused on the changes and adaptability in the rumen microbiota of Tibetan sheep when they adapted from grazing to a high-efficiency feeding strategy during the cold season by analyzing the rumen microbiota of Tibetan sheep raised under the different management systems, and it shows the linkages among the rumen core and pan-bacteriomes, nutrient utilization, and rumen short-chain fatty acids.
Due to its extremely harsh environment, including high altitude, hypoxia, long cold season, and strong ultraviolet radiation in the Qinghai–Tibet Plateau (QTP), herbage species and nutritional value of the pasture may differ considerably from elsewhere across the world. The aim of the present study was to develop biologically relevant equations for estimating the metabolizable energy (ME) value of fresh native herbages in the QTP using digestibility variables and chemical concentrations in the herbage offered to Tibetan sheep at the maintenance level. A total of 11 digestibility trials (6 sheep/trial) were performed in different grazing seasons from 2011 to 2016. The herbage was harvested daily in the morning and offered to sheep at the maintenance feeding level. Thirty-seven equations were developed for the prediction of herbage digestible energy (DE) and ME energy values. The mean prediction error for ME was the lowest when using herbage gross energy digestibility as a sole predictor. When using other digestibility variables (e.g., dry matter and organic matter) as primary predictors, addition of herbage nutrient concentration reduced the difference between predicted and actual values. When DE was used as the primary explanatory variable, mean prediction error was reduced with the addition of ash, nitrogen (N), diethyl ether extract (EE), neutral detergent fiber (NDF), and acid detergent fiber (ADF) concentrations. The internal validation of the present equations showed lower prediction errors when compared with those of existing equations for prediction of DE and ME concentrations in the herbage. Equations developed in the current study may thus allow for an improved and accurate prediction of metabolizable energy concentrations of herbage in practice, which is critical for the development of sustainable grazing systems in the QTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.