Infrared organic photodiodes have gained increasing attention due to their great application potentials in night vision, optical communication, and allweather imaging. However, the commonly occurring high dark current and low detectivity impede infrared photodetectors from portable applications at room temperature. Herein, an efficient and generic doping compensation strategy is developed to improve the detectivity of infrared organic photodiodes. A series of n-type organic semiconductors is investigated, and it is found that doping compensation strategy not only reduces the trap density of states and dark currents, but also restrains the nonradiative recombination with improved charge transport and collection. As a result, an ultralow noise spectral density of 8 × 10 −15 A Hz −1/2 as well as a high specific detectivity over 10 13 Jones in 780-1070 nm is achieved at room temperature. More importantly, the high-performance infrared organic photodiodes can be successfully applied in high-pixel-density image arrays without patterning sensing layers. These findings provide important compensation design insights that will be crucial to further improve the performance of infrared organic photodiodes in the future.
Stretchable/wearable strain sensors are attracting growing interest due to their broad applications in physical and physiological measurements. However, the development of a multifunctional highly stretchable sensor satisfying the requirements of ultrahigh sensitivity (able to distinguish sound frequency) remains a challenge. An ultrasensitive and highly stretchable multifunctional strain sensor with timbre-recognition ability based on high-crack-density vertical graphene (VGr) is fabricated using an ultrasonic peeling (UP) method. It can distinguish frequencies of sounds higher than 2500 Hz. Detailed microscopic examinations reveal that their ultrahigh sensitivity stems from the formation of high-density nanocracks in the graphitic base layer, which is bridged by the top branched VGr nanowalls. These nanocracks cut the VGr film into a large number of nanopieces, which increase the natural frequency of the sensors, enabling the sensors to distinguish the sound frequency. Demonstrations are presented to highlight the sensors' potential as wearable devices for human physiological signal and timbre detections. This is the first multifunctional highly stretchable strain sensor with timbre-recognition ability.
A stretchable capacitive strain sensors based on vertical graphene electrodes with unique stress direction recognizing ability is demonstrated, showing potential to detect physical and physiological signals.
Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:InO) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm V s, a maximum brightness of 13 400 cd/m, and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:InO and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into InO can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 and the on/off brightness ratio is 10).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.