In order to investigate the effect of Cr content on the microstructures and oxidation wear properties of high-boron high-speed steel (HBHSS), so as to explore oxidation wear resistant materials (e.g., hot rollers), a scanning electron microscope, an X-ray diffractometer, an electron probe X-ray microanalysis and an oxidation wear test at elevated temperatures were employed to investigate worn surfaces and worn layers. The results showed that the addition of Cr resulted in the transformation of martensite into ferrite and pearlite, while the size of the grid morphology of borides in HBHSSs was refined. After oxidation wear, oxide scales were formed and the high-temperature oxidation wear resistance of HBHSSs was gradually improved with increased additions of Cr. Meanwhile, an interaction between temperature and load in HBHSSs during oxidation wear occurred, and the temperature had more influence on the oxidation wear properties of HBHSSs. SEM observations indicated that a uniform and compact oxide film of HBHSSs in the worn surface at elevated temperatures was generated on the worn surface, and the addition of Cr also reduced the thickness of oxides and inhibited the spallation of worn layers, which was attributed to improvements in microhardness and oxidation resistance of the matrix in HBHSSs. A synergistic effect of temperature and load in HBHSSs with various Cr additions may dominate the oxidation wear process and the formation and spallation of oxide films.
In order to investigate the effect of Si content on the microstructures and properties of directionally solidified (DS) Fe-B alloy, a scanning electron microscope (SEM) with an energy dispersive spectrum (EDS), and X-ray diffraction have been employed to investigate the as-cast microstructures of DS Fe-B alloy. The results show that Si can strongly refine the columnar microstructures of the DS Fe-B alloy, and the columnar grain thickness of the oriented Fe2B is reduced with the increase of Si addition. In addition, Si is mainly distributed in the ferrite matrix, almost does not dissolve in boride, and seems to segregate in the center of the columnar ferrite to cause a strong solid solution strengthening and refinement effect on the matrix, thus raising the microhardness of the matrix and bulk hardness of the DS Fe-B alloy.
In this work, the as-cast directionally solidified (DS) Fe–B alloys with various Si contents and different boride orientation were designed and fabricated, and the as-cast microstructures and static oxidation behaviors of the DS Fe–B alloys were investigated extensively. The as-cast microstructure of the DS Fe–B alloys consists of the well-oriented Fe2B columnar grains and α-Fe, which are strongly refined by Si addition. The oxidation interface of the scales in the DS Fe–B alloy with 3.50 wt.% Si demonstrates an obvious saw-tooth shaped structure and is embedded into the alternating distributed columnar layer structures of the DS Fe–B alloy with oriented Fe2B and α-Fe matrix, which is beneficial to improve the anti-peeling performance of the oxide film compared with lower amounts of Si addition in DS Fe–B alloys with oriented Fe2B [002] orientation parallel to the oxidation direction (i.e., oxidation diffusion direction, labeled as Fe2B// sample). In the DS Fe–B alloys with oriented Fe2B [002] orientation vertical to the oxidation direction (i.e., labeled as Fe2B⊥ sample), due to the blocking and barrier effect of laminated-structure boride, Si is mainly enriched in the lower part of the oxide film to form a dense SiO2 thin layer adhered to layered boride. As a result, the internal SiO2 thin layer plays an obstructed and shielded role in oxidation of the substrate, which hinders the further internal diffusion of oxygen ions and improves the anti-oxidation performance of the Fe2B⊥ sample, making the average anti-oxidation performance better than that of the Fe2B// sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.