A lack of sleep is linked with a range of inner ear diseases, including hearing loss and tinnitus. Here, we used a mouse model to investigate the effects of sleep deprivation (SD) on noise vulnerability, and explored the mechanisms that might be involved in vitro, focusing particularly corticosterone levels and autophagic flux in cells. Female BALB/c mice were divided into six groups [control, acoustic trauma (AT)-alone, 1 day (d) SD-alone, 1d SD pre-AT, 5d SD-alone, and 5d SD pre-AT]. Cochlear damage was then assessed by analyzing auditory brainstem response (ABR), and by counting outer hair cells (OHCs) and the synaptic ribbons of inner hair cells (IHCs). In addition, we measured levels of serum corticosterone and autophagy protein expression in the basilar membranes by ELISA kits, and western blotting, respectively. We found that SD-alone temporarily elevated ABR wave I amplitude, but had no permanent effect on hearing level or IHC ribbon numbers. Combined with AT, the number of synaptic ribbons in the 1d SD pre-AT group was significantly higher than that in the AT-alone group, whereas the 5d SD pre-AT group showed more severe synaptopathy, and a greater loss of OHCs after 2 weeks than the other experimental groups exposed to noise. Correspondingly, the levels of corticosterone in the AT-alone group were higher than those of the 1d SD pre-AT group, but lower than those of the 5d SD pre-AT group. The 1d SD pre-AT group showed a marked elevation in the expression of microtubule-associated protein 1 light chain 3B (LC3B), whereas the AT-alone group exhibited only a mild increase. In contrast, the levels of LC3B did not change in the 5d SD pre-AT group. Experiments with HEI-OC-1 cells and cochlear basilar membrane cultures showed that high-concentrations of dexamethasone, and the inhibition of autophagy, aggravated cellular apoptosis induced by oxidative stress. In conclusion, noise-induced synaptopathy and hair cell loss can be mitigated by preceding 1d SD, but will be aggravated by preceding 5d SD. These findings may be attributable to corticosterone levels and the extent of autophagy.
In this study, age related Cav1.3 expression in cochlea and auditory cortex of C57BL/6J male mice was evaluated. It was found that the expression of Cav1.3 in cochlea decreased with aging whereas this phenomenon was not observed in neuron of auditory cortex. The correlation between decreased expression of Cav1.3 and age-related hearing losses was studied in vitro, after Cav1.3 was knocked out, the rate of apoptosis of hair cells increased after being subjected to ROS stresses, accompanied with enhanced senescence. Further, Cav1.3 knock down also interfered with the electrophysiology of hair cells. The effect was further confirmed in vivo, after Cav1.3 knocked down by injection of AAV, hearing impairment was observed in C57BL/6J male mice subjected to senescence and this was accompanied by increased loss of hair cells in cochlea. The effect was further confirmed in 3D organ culture, increased loss of hair cells after Cav1.3 was knocked down under ROS stresses.Mechanistically, Cav1.3 knock out resulted in decreased intracellular calcium which subsequently reduced the inactivation of ROS from complex I, and finally resulted in increased intracellular ROS and enhanced senescence.Collectively, these findings confirmed that Cav1.3 could protect cells in auditory pathway from oxidative stresses, and decreased expression of Cav1.3 in auditory pathway could contribute to hearing losses by enhancement of calcium-mediated oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.