The rapid wide-scale spread of fall armyworm (Spodoptera frugiperda) has caused serious crop losses globally. However, differences in the genetic background of subpopulations and the mechanisms of rapid adaptation behind the invasion are still not well understood. Here we report the assembly of a 390.38-Mb chromosome-level genome of fall armyworm derived from south-central Africa using Pacific Bioscience (PacBio) and Hi-C sequencing technologies, with scaffold N50 of 12.9 Mb and containing 22,260 annotated protein-coding genes. Genome-wide resequencing of 103 samples and strain identification were conducted to reveal the genetic background of fall armyworm populations in China. Analysis of genes related to pesticide-and Bacillus thuringiensis (Bt) resistance showed that the risk of fall armyworm developing
Mutualistic associations between symbiotic bacteria and their hosts are common within insect systems. However, viruses are often considered as pathogens even though some have been reported to be beneficial to their hosts. Herein, we report a novel densovirus, Helicoverpa armigera densovirus-1 (HaDNV-1) that appears to be beneficial to its host. HaDNV-1 was found to be widespread in wild populations of H. armigera adults (>67% prevalence between 2008 and 2012). In wild larval populations, there was a clear negative interaction between HaDNV-1 and H. armigera nucleopolyhedrovirus (HaNPV), a baculovirus that is widely used as a biopesticide. Laboratory bioassays revealed that larvae hosting HaDNV-1 had significantly enhanced resistance to HaNPV (and lower viral loads), and that resistance to Bacillus thuringiensis (Bt) toxin was also higher at low doses. Laboratory assays indicated that the virus was mainly distributed in the fat body, and could be both horizontally- and vertically-transmitted, though the former occurred only at large challenge doses. Densovirus-positive individuals developed more quickly and had higher fecundity than uninfected insects. We found no evidence for a negative effect of HaDNV-1 infection on H. armigera fitness-related traits, strongly suggesting a mutualistic interaction between the cotton bollworm and its densovirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.