C-C motif chemokine ligand 28 (CCL28) has been reported to be pro-tumoral in several cancer types. However, the role of CCL28 in pancreatic ductal adenocarcinoma (PDAC) progression remains unclear. CCL28 mRNA expression in tumors from PDAC patients was found to be elevated as compared to normal pancreas. CCL28 expression was also negatively correlated with overall survival (OS) in pancreatic cancer patients. Our in vitro experiments showed that CCL28 knockdown impairs the proliferation of mouse pancreatic cancer cell line PAN02. Moreover, in both immunocompetent syngeneic mice and immunodeficient NOD-SCID mice, CCL28 deficiency significantly attenuated the growth of subcutaneous PAN02 tumors. In syngeneic mouse model, CCL28 downregulation remodeled the pancreatic tumor microenvironment by suppressing the infiltration of both regulatory T (Treg) cells, myeloid-derived suppressor cells, and activated pancreatic stellate cells, and upregulating the expression of lymphocyte cytotoxic proteins including perforin and granzyme B. In conclusion, our work demonstrates that CCL28 is a potential target for pancreatic cancer treatment and CCL28 blockade could inhibit tumor growth through both tumor-cell-intrinsic and extrinsic mechanisms.
Aim: Recent progress in cancer immunotherapy has shown its promise and prompted researchers to develop novel therapeutic strategies. Dendritic cells (DCs) are professional antigen-presenting cells crucial for initiating adaptive anti-tumor immunity, therefore a promising target for cancer treatment. Here, anti-tumor activities of DC-targeting chemokines were explored in murine colorectal tumor models. Methods: The correlation of chemokine messenger RNA (mRNA) expression with DC markers was analyzed using The Cancer Genome Atlas (TCGA) dataset. Murine colorectal tumor cell lines (CT26 and MC38) stably overexpressing mouse C-C motif chemokine ligand 3 (CCL3), CCL19, CCL21, and X-C motif chemokine ligand 1 (XCL1) were established by lentiviral transduction. The effect of chemokines on tumor cell proliferation/survival was evaluated in vitro by cell counting kit-8 (CCK-8) assay and colony formation assay. Syngeneic subcutaneous tumor models were used to study the effects of these chemokines on tumor growth. Ki-67 expression in tumors was examined by immunohistochemistry. Immune cells in the tumor microenvironment (TME) and lymph nodes were analyzed by flow cytometry. Results: Expression of the four chemokines was positively correlated with the two DC markers [integrin alpha X (ITGAX) and CLEC9A] in human colorectal tumor samples. Tumoral overexpression of DC-targeting chemokines had little or no effect on tumor cell proliferation/survival in vitro while significantly suppressing tumor growth in vivo. Fluorescence-activated cell sorting (FACS) analysis showed that CCL19, CCL21, and XCL1 boosted the ratios of DCs and T cells in CD45+ leukocytes while CCL3 increased the percentage of CD45+ leukocytes in total cells in MC38 tumor. XCL1 had an additional positive effect on antigen uptake by DCs in the TME and antigen transfer to tumor-draining lymph nodes. Conclusions: CCL3, CCL19, CCL21, and XCL1 exhibited potent anti-tumor activities in vivo, although they might differentially regulate immune cells in the TME and antigen transfer to lymph nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.