Carbon nanotubes (CNTs) are allotropes of carbon, made of graphite and constructed in cylindrical tubes with nanometer in diameter and several millimeters in length. Their impressive structural, mechanical, and electronic properties are due to their small size and mass, their strong mechanical potency, and their high electrical and thermal conductivity. CNTs have been successfully applied in pharmacy and medicine due to their high surface area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They have been first proven to be an excellent vehicle for drug delivery directly into cells without metabolism by the body. Then other applications of CNTs have been extensively performed not only for drug and gene therapies but also for tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants. Moreover, CNTs have been recently revealed as a promising antioxidant. This minireview focuses the applications of CNTs in all fields of pharmacy and medicine from therapeutics to analysis and diagnosis as cited above. It also examines the pharmacokinetics, metabolism and toxicity of different forms of CNTs and discusses the perspectives, the advantages and the obstacles of this promising bionanotechnology in the future.
Objective To detect the expression of CEA-related cell adhesion molecule 5 (CEACAM5) in non-small-cell lung cancer (NSCLC) and explore its function in the progression and development of NSCLC. Methods qRT-PCR and immunohistochemistry were performed to detect CEACAM5 expression in human NSCLC tissues and cell lines. The correlation between CEACAM5 expression and the clinicopathological features of patients with NSCLC was also investigated. MTT, colony formation, wound healing, and immunoblot assays were performed to detect the functions of CEACAM5 in NSCLC cells in vitro, and immunoblotting was used to detect the effects of CEACAM5 on p38–Smad2/3 signaling. Results CEACAM5 expression was elevated in human NSCLC tissues and cells. We further found that CEACAM expression was correlated with clinicopathological features including T division, lymph invasion, and histological grade in patients with NSCLC. The in vitro assays confirmed that CEACAM5 depletion inhibited the proliferation and migration of NSCLC cells by activating p38–Smad2/3 signaling. We verified the involvement of CEACAM5 in the suppression of NSCLC tumor growth in mice. Conclusion CEACAM5 stimulated the progression of NSCLC by promoting cell proliferation and migration in vitro and in vivo. CEACAM5 may serve as a potential therapeutic target for the treatment of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.