Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121–158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F
V/F
M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.
Flavonoid compounds play important roles in the modern diet, and pear fruits are an excellent dietary source of these metabolites. However, information on the regulatory network of flavonoid biosynthesis in pear fruits is rare. In this work, 18 putative flavonoid-related MYB transcription factors (TFs) were screened by phylogenetic analysis and four of them were correlated with flavonoid biosynthesis patterns in pear fruits. Among these MYB-like genes, the specific functions of two novel MYB TFs, designated as PbMYB10b and PbMYB9, were further verified by both overexpression and RNAi transient assays. PbMYB10b, a PAP-type MYB TF with atypical motifs in its conserved region, regulated the anthocyanin and proanthocyanidin pathways by inducing the expression of PbDFR, but its function could be complemented by other MYB TFs. PbMYB9, a TT2-type MYB, not only acted as the specific activator of the proanthocyanidin pathway by activating the PbANR promoter, but also induced the synthesis of anthocyanins and flavonols by binding the PbUFGT1 promoter in pear fruits. The MYBCORE-like element has been identified in both the PbUFGT1 promoter and ANR promoters in most species, but it was not found in UFGT promoters isolated from other species. This finding was also supported by a yeast one-hybrid assay and thus enhanced the likelihood of the interaction between PbMYB9 and the PbUFGT1 promoter.
Both sorbitol and sucrose are synthesized in source leaves and transported to fruit for supporting fruit growth in tree fruit species of the Rosaceae family. In apple (Malus domestica), antisense suppression of aldose-6-phosphate reductase, the key enzyme for sorbitol synthesis, significantly decreased the sorbitol concentration but increased the sucrose concentration in leaves, leading to a lower sorbitol but a higher sucrose supply to fruit in these plants. In response to this altered carbon supply, the transgenic fruit had lower concentration of sorbitol and much higher concentration of glucose but similar levels of fructose, sucrose, and starch throughout fruit development relative to the untransformed control. Activities of sorbitol dehydrogenase, fructokinase, and sucrose phosphate synthase were lower, whereas activities of neutral invertase, sucrose synthase, and hexokinase were higher in the transgenic fruit during fruit development. Transcript levels of MdSOT1, MdSDHs, MdFK2, and MdSPS3/6 were downregulated, whereas transcript levels of MdSUC1/4, MdSUSY1-3, MdNIV1/3, MdHKs, and MdTMT1 were upregulated in the transgenic fruit. These findings suggest that the Sucrose cycle and the sugar transport system are very effective in maintaining the level of fructose and provide insights into the roles of sorbitol and sucrose in regulating sugar metabolism and accumulation in sorbitol-synthesizing species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.