GH4068 superalloy is a new type of nickel-based superalloy in the aerospace field. It is an important alloy material for the manufacture of aircraft tubular components and aero-engine hot-end components. These components need to be machined with good surface quality to meet their use requirements. New hybrid machining processes can improve the quality of surface finish compared to conventional machines. In this paper, ultrasonic assisted turning (UAT) technology was applied to the machining of GH4068 superalloy. The experimental system of UAT was established. Experiments of UAT and conventional turning (CT) of GH4068 superalloy were carried out to study the effects of cutting speed, feed speed, cutting depth and vibration amplitude on cutting force and surface roughness. The surface morphology of the workpiece and chip were observed. The experimental results show that Fx and Fy can be reduced by a maximum of 44% and 63%, respectively, and the surface roughness can be reduced by a maximum of 31% after adding ultrasonic vibration. Compared with CT, the UAT has a better machining quality, a more obvious chip-breaking effect, and a smaller chip bending radius, which guides the high-quality processing of the GH4068 superalloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.