We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g−1 at 0.5 A g−1 and 1181 F g−1 even at current density as high as 10 A g−1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg−1 (at power density of 551 W kg−1) with a 1.5 V operating voltage.
The emergence of perovskite-based memristors associated with the migration of ions has attracted attention for use in overcoming the limitations of the von Neumann computing architecture and removing the bottleneck of storage density. However, systematic research on the temperature dependence of halide perovskite-based memristors is still required due to the unavoidable thermal stability limits. In this work, mixed halide CsPbBr x I 3−x -based (X = 0, 1, 2) memristors with unique electrical and optical resistive switching properties in an ambient atmosphere from room temperature to a 240 °C maximum have been successfully achieved. At room temperature, the CsPbBr x I 3−x -based memristors exhibit outstanding resistive switching behaviors such as ultralow operating voltage (∼0.81, ∼0.64, and ∼0.54 V for different devices, respectively), moderate ON/OFF ratio (∼10 2 ), stable endurance (10 3 cycles), and long retention time (10 4 s). The CsPbBr x I 3−x -based memristors maintain excellent repeatability and stability at high temperature. Endurance failures of CsPbI 3 , CsPbBrI 2 , and CsPbBr 2 I memristors occur at 90, 150, and 270 °C, respectively. Finally, nonvolatile imaging employing CsPbBr 2 I-based memristor arrays based on the electrical-write and optical-erase operation at 100 °C has been demonstrated. This study provides utilization potentiality in the high temperature scenarios for perovskite wearable and large-scale information devices.
A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g−1 at a current density of 1 A g−1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g−1 at a current density of 2 A g−1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm−2 at 2 mA cm−2 and a high energy density of 0.71 mWh cm−2 at a power density of 17.05 mW cm−2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge–discharge cycles).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.