Long‐term exposure to peritoneal dialysate with high glucose (HG) leads to peritoneal fibrosis and thus decreases dialysis efficiency. In this study, we explored the role of β‐catenin in this process. C57BL/6 mice received daily intraperitoneal injection with 10% of the body weight of saline (control), 4.25% glucose peritoneal dialysis fluid (PDF), or PDF combined with 5 mg·kg −1 of the β‐catenin inhibitor ICG‐001 (PDF+ICG) for 30 days. Also, mice peritoneal epithelial cells (mPECs) were cultured in 4.25% glucose (HG) or combined with 10 μ m ICG‐001 (HG+ICG) for 48 h. We found greater thickness of the parietal peritoneum in the PDF‐treated mice. Additionally, lower expression of E‐cadherin, higher expression of Vimentin, β‐catenin, and Snail, and activation of β‐catenin was observed in the mice and in HG‐treated mPECs, all of which were reversed by ICG‐001. The changes in E‐cadherin and Vimentin indicated occurrence of the epithelial‐to‐mesenchymal transition (EMT). Thus, β‐catenin signaling participates in the process of HG‐induced peritoneal fibrosis, and the EMT of peritoneal epithelial cells is one of the underlying mechanisms of this pathological change.
Donor‐derived cell‐free DNA (dd‐cfDNA) is a promising biomarker for monitoring allograft status. However, whether dd‐cfDNA can reflect real‐time anti‐rejection treatment effects remains unclear. We prospectively recruited 28 patients with acute renal rejection, including 5 with ABMR, 12 with type IA or type IB rejection, and 11 with type IIA or IIB rejection. dd‐cfDNA levels in peripheral blood were measured using human single nucleotide polymorphism (SNP) locus capture hybridization. The percentage of dd‐cfDNA (dd‐cfDNA%) declined significantly from 2.566 ± 0.549% to 0.773 ± 0.116% (P < .001) after anti‐rejection therapy. The dd‐cfDNA% decreased steadily over the course of 3 days with daily methylprednisolone injections, but no significant difference in the dd‐cfDNA% was observed between the end of anti‐rejection therapy and 2 weeks later. Changes in the dd‐cfDNA% (∆dd‐cfDNA%) demonstrated a positive correlation with estimated glomerular filtration rates at 1 month (ρ = 2.570, P = .022), 3 months (ρ = 3.210, P = .027), and 6 months (ρ = 2.860, P = .019) after therapy. Thus, the dd‐cfDNA assay shows prognostic capabilities in therapy outcome and allograft recovery; however, its ability is inhibited by methylprednisolone regardless of the types of rejection. Additionally, a reassessment of frequency intervals for testing is required.
Peritoneal fibrosis is a severe complication arising from long-term peritoneal dialysis (PD). Tamoxifen (Tamo) has been clinically proven effective in a series of fibrotic diseases, such as PD-associated encapsulating peritoneal sclerosis (EPS), but the mechanisms underlying Tamoxifen’s protective effects are yet to be defined. In the present study, C57BL/6 mice received intraperitoneal injections of either saline, 4.25% high glucose (HG) PD fluid (PDF) or PDF plus Tamoxifen each day for 30 days. Tamoxifen attenuated thickening of the peritoneum, and reversed PDF-induced peritoneal expression of E-cadherin, Vimentin, matrix metalloproteinase 9 (MMP9), Snail, and β-catenin. Mouse peritoneal mesothelial cells (mPMCs) were cultured in 4.25% glucose or 4.25% glucose plus Tamoxifen for 48 h. Tamoxifen inhibited epithelial-to-mesenchymal transition (EMT) as well as phosphorylation of glycogen synthase kinase-3β (GSK-3β), nuclear β-catenin, and Snail induced by exposure to HG. TWS119 reversed the effects of Tamoxifen on β-catenin and Snail expression. In conclusion, Tamoxifen significantly attenuated EMT during peritoneal epithelial fibrosis, in part by inhibiting GSK-3β/β-catenin activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.