Session-based recommendation, which aims to predict the user's immediate next action based on anonymous sessions, is a key task in many online services (e.g., e-commerce, media streaming). Recently, Self-Attention Network (SAN) has achieved significant success in various sequence modeling tasks without using either recurrent or convolutional network. However, SAN lacks local dependencies that exist over adjacent items and limits its capacity for learning contextualized representations of items in sequences. In this paper, we propose a graph contextualized self-attention model (GC-SAN), which utilizes both graph neural network and self-attention mechanism, for session-based recommendation. In GC-SAN, we dynamically construct a graph structure for session sequences and capture rich local dependencies via graph neural network (GNN). Then each session learns long-range dependencies by applying the self-attention mechanism. Finally, each session is represented as a linear combination of the global preference and the current interest of that session. Extensive experiments on two real-world datasets show that GC-SAN outperforms state-of-the-art methods consistently.
Traffic speed prediction is known as an important but challenging problem. In this paper, we propose a novel model, called LC-RNN, to achieve more accurate traffic speed prediction than existing solutions. It takes advantage of both RNN and CNN models by a rational integration of them, so as to learn more meaningful time-series patterns that can adapt to the traffic dynamics of surrounding areas. Furthermore, since traffic evolution is restricted by the underlying road network, a network embedded convolution structure is proposed to capture topology aware features. The fusion with other information, including periodicity and context factors, is also considered to further improve accuracy. Extensive experiments on two real datasets demonstrate that our proposed LC-RNN outperforms six well-known existing methods.
Sequential recommendation, which aims to recommend next item that the user will likely interact in a near future, has become essential in various Internet applications. Existing methods usually consider the transition patterns between items, but ignore the transition patterns between features of items. We argue that only the item-level sequences cannot reveal the full sequential patterns, while explicit and implicit feature-level sequences can help extract the full sequential patterns. In this paper, we propose a novel method named Feature-level Deeper Self-Attention Network (FDSA) for sequential recommendation. Specifically, FDSA first integrates various heterogeneous features of items into feature sequences with different weights through a vanilla mechanism. After that, FDSA applies separated self-attention blocks on item-level sequences and feature-level sequences, respectively, to model item transition patterns and feature transition patterns. Then, we integrate the outputs of these two blocks to a fully-connected layer for next item recommendation. Finally, comprehensive experimental results demonstrate that considering the transition relationships between features can significantly improve the performance of sequential recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.