In the medical field, text classification based on natural language process (NLP) has shown good results and has great practical application prospects such as clinical medical value, but most existing research focuses on English electronic medical record data, and there is less research on the natural language processing task for Chinese electronic medical records. Most of the current Chinese electronic medical records are non-institutionalized texts, which generally have low utilization rates and inconsistent terminology, often mingling patients’ symptoms, medications, diagnoses, and other essential information. In this paper, we propose a Capsule network model for electronic medical record classification, which combines LSTM and GRU models and relies on a unique routing structure to extract complex Chinese medical text features. The experimental results show that this model outperforms several other baseline models and achieves excellent results with an F1 value of 73.51% on the Chinese electronic medical record dataset, at least 4.1% better than other baseline models.
The medical information carried in electronic medical records has high clinical research value, and medical named entity recognition is the key to extracting valuable information from large-scale medical texts. At present, most of the studies on Chinese medical named entity recognition are based on character vector model or word vector model. Owing to the complexity and specificity of Chinese text, the existing methods may fail to achieve good performance. In this study, we propose a Chinese medical named entity recognition method that fuses character and word vectors. The method expresses Chinese texts as character vectors and word vectors separately and fuses them in the model for features. The proposed model can effectively avoid the problems of missing character vector information and inaccurate word vector partitioning. On the CCKS 2019 dataset for the named entity recognition task of Chinese electronic medical records, the proposed model achieves good performance and can effectively improve the accuracy of Chinese medical named entity recognition compared with other baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.