With information from multiple input modalities, sensor fusion-based algorithms usually out-perform their singlemodality counterparts in robotics. Camera and LIDAR, with complementary semantic and depth information, are the typical choices for detection tasks in complicated driving environments. For most camera-LIDAR fusion algorithms, however, the calibration of the sensor suite will greatly impact the performance. More specifically, the detection algorithm usually requires an accurate geometric relationship among multiple sensors as the input, and it is often assumed that the contents from these sensors are captured at the same time. Preparing such sensor suites involves carefully designed calibration rigs and accurate synchronization mechanisms, and the preparation process is usually done offline. In this work, a segmentationbased framework is proposed to jointly estimate the geometrical and temporal parameters in the calibration of a camera-LIDAR suite. A semantic segmentation mask is first applied to both sensor modalities, and the calibration parameters are optimized through pixel-wise bidirectional loss. We specifically incorporated the velocity information from optical flow for temporal parameters. Since supervision is only performed at the segmentation level, no calibration label is needed within the framework. The proposed algorithm is tested on the KITTI dataset, and the result shows an accurate real-time calibration of both geometric and temporal parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.