Epigenetic misregulation is consistent with various non-Mendelian features of schizophrenia and bipolar disorder. To date, however, few studies have investigated the role of DNA methylation in major psychosis, and none have taken a genome-wide epigenomic approach. In this study we used CpG-island microarrays to identify DNA-methylation changes in the frontal cortex and germline associated with schizophrenia and bipolar disorder. In the frontal cortex we find evidence for psychosis-associated DNA-methylation differences in numerous loci, including several involved in glutamatergic and GABAergic neurotransmission, brain development, and other processes functionally linked to disease etiology. DNA-methylation changes in a significant proportion of these loci correspond to reported changes of steady-state mRNA level associated with psychosis. Gene-ontology analysis highlighted epigenetic disruption to loci involved in mitochondrial function, brain development, and stress response. Methylome network analysis uncovered decreased epigenetic modularity in both the brain and the germline of affected individuals, suggesting that systemic epigenetic dysfunction may be associated with major psychosis. We also report evidence for a strong correlation between DNA methylation in the MEK1 gene promoter region and lifetime antipsychotic use in schizophrenia patients. Finally, we observe that frontal-cortex DNA methylation in the BDNF gene is correlated with genotype at a nearby nonsynonymous SNP that has been previously associated with major psychosis. Our data are consistent with the epigenetic theory of major psychosis and suggest that DNA-methylation changes are important to the etiology of schizophrenia and bipolar disorder.
Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
5-hydroxymethylcytosine (5-hmC), a derivative of 5-methylcytosine (5-mC), is abundant in the brain for unknown reasons. Our goal was to characterize the genomic distribution of 5-hmC and 5-mC in human and mouse tissues. We assayed 5-hmC using glucosylation coupled with restriction enzyme digestion, and interrogation on microarrays. We detected 5-hmC enrichment in genes with synapse-related functions in both human and mouse brain. We also identified substantial tissue-specific differential distributions of these DNA modifications at the exon-intron boundary, in both human and mouse. This boundary change was mainly due to 5-hmC in the brain, but due to 5-mC in non-neural contexts. This pattern was replicated in multiple independent datasets and with single molecule sequencing. Moreover, in human frontal cortex, constitutive exons contained higher levels of 5-hmC, relative to alternatively-spliced exons. Our study suggests a novel role for 5-hmC in RNA splicing and synaptic function in the brain.
Epigenetic studies of DNA and histone modifications represent a new and important activity in molecular investigations of human disease. Our previous epigenome-wide scan identified numerous DNA methylation differences in post-mortem brain samples from individuals affected with major psychosis. In this article, we present the results of fine mapping DNA methylation differences at the human leukocyte antigen (HLA) complex group 9 gene (HCG9) in bipolar disorder (BPD). Sodium bisulfite conversion coupled with pyrosequencing was used to interrogate 28 CpGs spanning ∼700 bp region of HCG9 in 1402 DNA samples from post-mortem brains, peripheral blood cells and germline (sperm) of bipolar disease patients and controls. The analysis of nearly 40 000 CpGs revealed complex relationships between DNA methylation and age, medication as well as DNA sequence variation (rs1128306). Two brain tissue cohorts exhibited lower DNA methylation in bipolar disease patients compared with controls at an extended HCG9 region (P=0.026). Logistic regression modeling of BPD as a function of rs1128306 genotype, age and DNA methylation uncovered an independent effect of DNA methylation in white blood cells (odds ratio (OR)=1.08, P=0.0077) and the overall sample (OR=1.24, P=0.0011). Receiver operating characteristic curve A prime statistics estimated a 69-72% probability of correct BPD prediction from a case vs control pool. Finally, sperm DNA demonstrated a significant association (P=0.018) with BPD at one of the regions demonstrating epigenetic changes in the post-mortem brain and peripheral blood samples. The consistent multi-tissue epigenetic differences at HCG9 argue for a causal association with BPD.
Conductive hydrogels have shown great potential in the field of flexible strain sensors. However, their application is greatly limited due to the low conductivity and poor mechanical properties at subzero temperatures. Herein, an ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel was fabricated by grafting acrylonitrile and acrylamide copolymers onto the cellulose chains in the presence of zinc chloride using ceric ammonium nitrate as the initiator. The resulting hydrogel exhibited ultrastretchability (1730%), excellent tensile strength (160 kPa), high elasticity (90%), good toughness (1074.7 kJ/m 3 ), and fatigue resistance property due to the existence of dipole−dipole and multiple hydrogen-bonding interactions on the hydrogel network. In addition, the introduced zinc chloride endowed the cellulose-based hydrogel with remarkable electric conductivity (1.54 S/m) and excellent antifreezing performance (−33 °C). Finally, the hydrogel showed high sensitivity and stability to monitor human activities. In summary, this work presented a facile strategy to construct conductive hydrogel with excellent antifreezing and mechanical properties simultaneously, which showed great potential for wearable strain sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.