Chiral metal-organic frameworks (MOFs) with porous and tunable nature show promise as heterogeneous asymmetric catalysts. Through incorporating the stereoselective organocatalyst L- or D-pyrrolidin-2-ylimidazole (PYI) and a triphenylamine photoredox group into a single framework, we have developed two enantiomeric MOFs, Zn-PYI1 and Zn-PYI2, to prompt the asymmetric α-alkylation of aliphatic aldehydes in a heterogeneous manner. The strong reductive excited state of the triphenylamaine moiety within these MOFs initiated a photoinduced electron transfer, rendering an active intermediate for the α-alkylation. The chiral PYI moieties acted as cooperative organocatalytic active sites to drive the asymmetric catalysis with significant stereoselectivity. Control experiments using the lanthanide-based metal-organic frameworks Ho-TCA and MOF-150, assembled from 4,4',4"-nitrilotribenzoic acid, as catalysts suggested that both the photosensitizer triphenylamine moiety and the chiral organocatalyst D-/L-PYI moiety were necessary for the light-driven α-alkylation reactions. Further investigations demonstrated that the integration of both photocatalyst and asymmetric organocatalyst into a single MOF makes the enantioselection superior to that of simply mixing the corresponding MOFs with the chiral adduct. The easy availability, excellent stereoselectivity, great separability, and individual components fixed with their well-defined porous and repeating structures make the MOF a versatile platform for a new type of tandem catalyst and cooperative catalyst.
Homochiral crystallizations of two enantiomeric metal-organic frameworks (MOFs) Ce-MDIP1 and Ce-MDIP2 were achieved by using L- or D-BCIP as chiral inductions, respectively, where the chiralities were characterized by solid state CD spectra. Ce-MDIPs exhibit excellent catalytic activity and high enantioselectivity for the asymmetric cyanosilylation of aromatic aldehydes; the homochiral Cd-TBT MOF having L-PYI as a chiral adduct exhibits stereochemical catalysis toward the Aldol reactions.
Metal-organic polyhedra represent a unique class of functional molecular containers that display interesting molecular recognition properties and fascinating reactivity reminiscent of the natural enzymes. By incorporating a triphenylamine moiety as a bright blue emitter, a robust cerium-based tetrahedron was developed as a luminescent detector of nitronyl nitroxide (PTIO), a specific spin-labeling nitric oxide (NO) trapper. The tetrahedron encapsulates molecules of NO and PTIO within the cavity to prompt the spin-trapping reaction and transforms the normal EPR responses into a more sensitively luminescent signaling system with the limit of detection improved to 5 nM. Twelve-fold amide groups are also functionalized within the tetrahedron to modify the hydrophilic/lipophilic environment, ensuring the successful application of biological imaging in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.