Chirality exists as a ubiquitous phenomenon in nature, from molecular level l-amino acids, d-sugar, secondary structures of proteins, DNA, RNA, and nanoscale helices to macroscopic conch and even galaxy. The aggregation of molecular building blocks with or without chiral centers might bring about asymmetric spatial stacking, which further results in the appearance of nonsymmetry in extended scales like helical nanofibers. This phenomenon, known as supramolecular chirality, is an important branch of supramolecular and self-assembly chemistry, which relates intimately with biomimetics, asymmetric catalysis, and designing chiroptic advanced materials. One of the important research focuses among supramolecular chirality is about rational manipulation of chirality amplification and handedness, presenting a profound influence on the performance of resulting soft materials such as circularly polarized luminescence and cell adhesion on hydrogels. The control over supramolecular chirality normally relies on two factors, i.e., thermodynamic and kinetic variables dependent on molecular structural parameters and environmental contributions, respectively. Supramolecular chirality in two or more component-based systems places an emphasis on thermodynamic control as it occurs from either integrated coassembly or separated self-sorting, which is more sophisticated than that of single component systems. Thus, the study on supramolecular chirality in multicomponent systems could mimic complicated biosystems, allowing for better understanding about the origin of natural chirality and extended applications as biomimetics. To date, the exploration of supramolecular chirality in multicomponent systems is restricted on both fundamental and application aspects when compared to more matured single component systems. Over the past few years, we have carried out systematic studies on several systems expressing supramolecular chirality from chiral amplification or symmetry breaking. We emphasized more the thermodynamic control by introducing a second component to form noncovalent bonding like hydrogen bonding or coordination interactions. In this Account, we would specifically discuss rational manipulation of the occurrence, transfer, and inversion of supramolecular chirality by taking several of the latest representative examples. In the multicomponent systems, in addition to the building blocks with chiral centers, the second or third components could be structural analogues and achiral small molecules such as bipyridines, melamine, metal ions, inorganic nanomaterials, and even solvents. These second or third components are able to incorporate during the aggregation to form coassembly via noncovalent bonds, influencing spatial arrangements of building blocks within various dimensions from vesicles and nanofibers to organic/inorganic hybrids. Other than chirality, morphology, stimulus responsiveness, and properties could also be well tailored by controlling interactions between different components.
Manipulating the property transfer in nanosystems is a challenging task since it requires switchable molecular packing such as separate aggregation (self‐sorting) or synergistic aggregation (coassembly). Herein, a unique manipulation of self‐sorting/coassembly aggregation and the observation of switchable stimulus‐responsiveness transfer in a two component self‐assembly system are reported. Two building blocks bearing the same cholesterol group give versatile topological structures in polar and nonpolar solvents. One building block (cholesterol conjugated cynanostilbene, CCS) consists of cholesterol conjugated with a cynanostilbene unit, and the other one (C10CN) is comprised of cholesterol connected with a naphthalimide group having a flexible long alkyl chain. Their assemblies including gel, crystalline plates, and vesicles are obtained. In gel and crystalline plate phases, the self‐sorting behavior dominates, while synergistic coassembly occurs in vesicle phase. Since CCS having the cyanostilbene group can respond to the light irradiation, it undergoes light‐induced chiral amplification. C10CN is thermally responsive, whereby its supramolecular chirality is inversed upon heating. In coassembled vesicles, it is interestingly observed that their responsiveness can be transferred by each other, i.e., the C10CN segment is sensitive to the light irradiation, while CCS is thermoresponsive. This unprecedented behavior of the property transfer may shine a light to the precise fabrication of smart materials.
In the solid state, amino acids (alanine and phenylglycine) with appended pyrene segments self‐assembled into α‐helix‐like structures by asymmetrical H‐bonds between carboxylic acid and amide segments, further inducing supramolecular tilted chirality of the achiral pyrenes. These structures bind melamine and electron‐deficient units through H‐bond and charge‐transfer interactions, respectively. Charge‐transfer interactions enhance the dissymmetry g‐factor of absorption (gabs; up to 1.4×10−2) with an extended Cotton effect active region (from 250 to 600 nm). Incorporating melamine inverts the handedness of circularly polarized luminescence and boosts the dissymmetry g‐factor (glum). Melamine also induces macroscopic chirality at the nanoscale, whereby the 2D lamellar structures are transformed into 1D helices at the nanoscale, leading to giant tubular structures at the microscale.
Controlling the structural parameters in coassembly is crucial for the fabrication of multicomponent functional materials. Here a proof-of-concept study is presented to reveal the α-substituent effect of aromatic amino acids on their selective coassembly with bipyridine binders. With the assistance of X-ray scattering technique, it is found that individual packing in the solid state as well as bulky effect brought by α-substitution determines the occurrence of coassembly. A well-performed hydrogels based on the complexation between certain aromatic amino acids and bipyridine units are successfully constructed, providing unprecedented smart materials with light irradiation-triggered luminescence. Such hydrogels without the phase separation and photobleaching during light irradiation are able to behave fluorescent imprint materials. This study provides a suitable protocol in rationally designing amino acid residues of short peptides for fabricating self-assembled multicomponent materials. In addition, this protocol is useful in screening potential functional materials on account of diverse self-assembly behavior.
Inhomogeneous heating by photothermal therapy (PTT) during cancer treatment often results in the recurrence of tumors. Thus, integrating PTT with chemotherapy (CHT) may provide a complementary treatment for enhanced therapeutic efficiency. Herein, this study develops a hollow structured polymer-silica nanohybrid (HPSN) as a nanocarrier to simultaneously deliver the anticancer drug paclitaxel and photothermal agent palladium phthalocyanine to tumors through enhanced permeation and the retention effect. A combinational CHT/PTT therapy on mice bearing aggressive tumor grafts is conducted. The highly malignant tumor model, which recurs after sole treatment of PTT, can be eradicated by the combined CHT/PTT treatment. In addition, most of the off-targeted HPSN nanocarriers can be excreted through a hepatobiliary pathway in about 10 d. Serology results show that the fast-clearable HPSN can significantly reduce the side effect of the loaded paclitaxel drug. The present work provides an alternative approach for combinational cancer treatment with high therapeutic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.