Amyloid A (AA) amyloidosis is one of the principal causes of morbidity and mortality in captive cheetahs (Acinonyx jubatus), which are in danger of extinction. For practical conservation of this species, therefore, it is critical to elucidate the etiology of AA amyloidosis, especially to understand the mechanisms of transcriptional regulation of serum amyloid A (SAA), a precursor protein of the AA protein. In this study, the structure and nucleotide sequence of the cheetah SAA1 gene including the 5'-flanking promoter/enhancer region was determined. Putative nuclear factor kappa-B (NF-kappaB) and CCAAT/enhancer binding protein beta (C/EBPbeta) cis-acting elements, which play key roles in SAA1 transcriptional induction in response to inflammation, were identified in the 5'-flanking region of the cheetah SAA1 gene. Fortuitously, a single nucleotide polymorphism was identified in the captive cheetah cohort in the putative NF-kappaB cis-acting element and had a remarkable effect on SAA1 transcriptional induction. These results provide a foundation not only for clarifying the etiology of AA amyloidosis in the cheetah but also for contriving a strategy for conservation of this species.
Patients on long-term hemodialysis can develop dialysis-related amyloidosis (DRA) due to deposition of beta(2)-microglobulin (beta(2)m) into amyloid fibrils (Abeta(2)M). Despite intensive biochemical studies, the pathogenesis of amyloid deposition in DRA patients remains poorly understood. To elucidate the mechanisms that underlie Abeta(2)M fibril formation in DRA, we generated transgenic mice that overexpress human beta(2)m protein in a mouse beta(2)m gene knockout background (hB2MTg(+/+) mB2m(+/+)). The hB2MTg(+/+)mB2m(-/-) mice express a high level of human beta(2)m protein in many tissues as well as a high plasma beta(2)m concentration (192.8 mg/L). This concentration is >100 times higher than that observed in healthy humans and >4 times higher than that detected in patients on dialysis. We examined spontaneous and amyloid fibril-induced amyloid deposition in these mice. Amyloid deposition of beta(2)m protein was not observed in aged or amyloid fibril injected animals. However, mouse senile apolipoprotein A-II amyloidosis (AApoAII) was detected, particularly in the joints of mice that were injected with AApoAII amyloid fibrils. This study demonstrates that this mouse model could be valuable in studying the components and conditions that promote DRA, and indicates that high plasma concentrations of hbeta(2)m as well as seeding with pre-existing amyloid fibrils may not be sufficient to induce Abeta(2)M.
It has been shown that experimental murine AA amyloidosis can be enhanced by dietary ingestion of amyloid fibrils, and it is known that systemic AA amyloidosis occasionally develops in aged cattle. In this study, we examined amyloid deposits in renal and muscular tissues simultaneously obtained from slaughtered aged cattle; from both tissues when affected, amyloid-enhancing activity was also investigated. On histopathology, renal amyloid deposition was seen in nine of the 293 cattle with no history of disease, and minute amyloid deposition in muscular tissue was detectable in one of these nine. All these amyloid deposits were immunohistochemically demonstrated to be AA. Extracts, which might contain amyloid fibril fractions, were isolated from renal and muscular tissues in five of these nine cattle. On SDS-PAGE and Western blot analysis, protein bands immunoreactive to anti-AA serum were detected in the kidney fractions obtained from four of the five latter cattle, but no bands were seen in the muscle fractions of any of the five cattle. Amyloid fibril fractions from two cattle were intravenously injected into group of seven experimentally designed mice for induction of AA amyloidosis. All seven mice injected with kidney fraction developed severe AA amyloidosis, whereas only one of the seven mice given muscle fraction showed slight amyloid deposition in the spleen. These data suggest that food products made from aged cattle possess amyloid-enhancing potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.