Deep neural networks (DNNs) have achieved state-of-the-art performance in many important domains, including medical diagnosis, security, and autonomous driving. In domains where safety is highly critical, an erroneous decision can result in serious consequences. While a perfect prediction accuracy is not always achievable, recent work on Bayesian deep networks shows that it is possible to know when DNNs are more likely to make mistakes. Knowing what DNNs do not know is desirable to increase the safety of deep learning technology in sensitive applications; Bayesian neural networks attempt to address this challenge. Traditional approaches are computationally intractable and do not scale well to large, complex neural network architectures. In this paper, we develop a theoretical framework to approximate Bayesian inference for DNNs by imposing a Bernoulli distribution on the model weights. This method called Monte Carlo DropConnect (MC-DropConnect) gives us a tool to represent the model uncertainty with little change in the overall model structure or computational cost. We extensively validate the proposed algorithm on multiple network architectures and datasets for classification and semantic segmentation tasks. We also propose new metrics to quantify uncertainty estimates. This enables an objective comparison between MC-DropConnect and prior approaches. Our empirical results demonstrate that the proposed framework yields significant improvement in both prediction accuracy and uncertainty estimation quality compared to the state of the art.
Machine learning is often perceived as a sophisticated technology accessible only by highly trained experts. This prevents many physicians and biologists from using this tool in their research. The goal of this paper is to eliminate this out-dated perception. We argue that the recent development of auto machine learning techniques enables biomedical researchers to quickly build competitive machine learning classifiers without requiring in-depth knowledge about the underlying algorithms. We study the case of predicting the risk of cardiovascular diseases. To support our claim, we compare auto machine learning techniques against a graduate student using several important metrics, including the total amounts of time required for building machine learning models and the final classification accuracies on unseen test datasets. In particular, the graduate student manually builds multiple machine learning classifiers and tunes their parameters for one month using scikit-learn library, which is a popular machine learning library to obtain ones that perform best on two given, publicly available datasets. We run an auto machine learning library called auto-sklearn on the same datasets. Our experiments find that automatic machine learning takes 1 h to produce classifiers that perform better than the ones built by the graduate student in one month. More importantly, building this classifier only requires a few lines of standard code. Our findings are expected to change the way physicians see machine learning and encourage wide adoption of Artificial Intelligence (AI) techniques in clinical domains.
No abstract
A deep-learning-based workflow is proposed in this paper to solve the first-arrival picking problem for near-surface velocity model building. The traditional method such as STA/LTA method performs poorly when signal-to-noise ratio (SNR) is low or near-surface geological structures are complex. This challenging task is formulated as a segmentation problem accompanied by a novel post-processing approach to identify pickings along the segmentation boundary. The workflow includes three parts: a deep U-net for segmentation, a recurrent neural network (RNN) for picking, and a weight adaptation approach to be generalized for new datasets. Particularly, we highlight the importance of selecting a proper loss function for training the network. Instead of taking an end-to-end approach to solve the picking problem, we emphasize the performance gain obtained by using RNN to optimize the picking. Finally, we adopt a simple transfer learning scheme and demonstrate its robustness via a weight adaptation approach to maintain the picking performance on new datasets. Our tests on synthetic datasets show the advantage of the proposed workflow compared with the existing deep-learning methods that focus only on segmentation performance. Our tests on field datasets illustrate that a good post-processing picking step is essential for correcting the segmentation errors and the overall workflow is efficient in minimizing human interventions for the first-arrival picking task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.