Background Acute myocardial infarction is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. Methods Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. Results Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. Conclusion In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.
BackgroundIn our clinical work, we found that cancer patients were susceptible to coronary atherosclerotic heart disease (CAD). However, less is known about the relationship between CAD and cancer. The present study aimed to identify the risk factors for CAD and cancer, as well as the relationship between CAD and cancer.MethodsIn this retrospective study, 1600 patients between January 2012 and June 2019 were enrolled and divided into groups according to whether they had CAD or cancer. Single-factor and multivariate analysis methods were applied to examine the risk factors for CAD and cancer.Results(1) Cancer prevalence was significantly higher in patients with CAD than in patients without CAD (47.2 vs. 20.9%). The prevalence of CAD in cancer and non-cancer patients was 78.9 and 52.4%, respectively. (2) Multivariable logistic regression showed that patients with cancer had a higher risk of developing CAD than non-cancer patients (OR: 2.024, 95% CI: 1.475 to 2.778, p < 0.001). Respiratory (OR: 1.981, 95% CI: 1.236–3.175, p = 0.005), digestive (OR: 1.899, 95% CI: 1.177–3.064, p = 0.009) and urogenital (OR: 3.595, 95% CI: 1.696–7.620, p = 0.001) cancers were significantly associated with a higher risk of CAD compared with no cancer. (3) Patients with CAD also had a higher risk of developing cancer than non-CAD patients (OR = 2.157, 95% CI: 1.603 to 2.902, p < 0.001). Patients in the Alanine aminotransferase (ALT) level ≥ 40 U/L group had a lower risk of cancer than patients in the ALT level < 20 U/L group (OR: 0.490, 95% CI: 0.333–0.722, p < 0.001). (4) An integrated variable (Y = 0.205 × 10–1 age − 0.595 × 10–2 HGB − 0.116 × 10–1 ALT + 0.135 FIB) was identified for monitoring the occurrence of cancer among CAD patients, with an AUC of 0.720 and clinical sensitivity/specificity of 0.617/0.711.Conclusion(1) We discovered that CAD was an independent risk factor for cancer and vice versa. (2) Digestive, respiratory and urogenital cancers were independent risk factors for CAD. (3) We created a formula for the prediction of cancer among CAD patients. (4) ALT, usually considered a risk factor, was proven to be a protective factor for cancer in this study.
Background: Acute myocardial infarction (MI) is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. Methods: Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. Results: Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. Conclusion: In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.
BackgroundAlthough provisional stenting strategy based on jailed balloon side branch (SB) protection could be useful for high-risk bifurcation lesion in certain clinical scenarios, its complexity still gives rise to procedure complications. We proposed a novel strategy, the jailed balloon proximal optimization technique (JB-POT), to simplify the procedures in treating complex coronary bifurcation lesions (CBLs). The present study was designed to verify the safety and efficacy of JB-POT under bench testing and clinical circumstances.MethodsAfter a stent was deployed in main vessel (MV) with a balloon jailed in SB, POT and post-dilation of the stent were performed without retrieving the jailed balloon. A re-POT was performed 2 mm away from SB branching point to minimize proximal stent malapposition. The JB-POT procedure was performed on 10 samples of a silicone bifurcation bench model, and optical coherence tomography (OCT) was utilized to evaluate stent deployment. From December 2018 to July 2021, a total of 28 consecutive patients with true CBLs treated with JB-POT were enrolled. Immediate procedure results were observed, and clinical follow-ups were performed.ResultsThe bench test showed that JB-POT did not induce significant stent malapposition, underexpansion or distortion, as indexed by the malapposition rate, minimum stent area (MSA), eccentricity index and symmetry index determined through OCT. Under clinical circumstances, JB-POT did not induce significant malapposition, underexpansion or distortion. Among the 30 lesions, there was no primary endpoint event defined as SB occlusion, need to rewire the SB with a polymer-covered guide wire, or failure to retrieve a jailed wire or balloon. One rewiring event and 0 double stenting events occurred as secondary endpoint events. One patient died of heart failure in the 8th month after discharge.ConclusionsThe JB-POT protocol, which tremendously simplifies the current standard provisional stenting procedure in complicated bifurcation lesions, shows acceptability in safety and efficacy. Hence, it might become an applicable strategy for treating high-risk bifurcation lesions, especially those with multiple risked SBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.