The erosion rate of cohesive soils was typically modeled with the excess shear stress model and the Wilson model. Several kinds of research have been conducted to determine the erodibility parameters of the two models, but few attempts have been made hitherto to investigate the general trends and range of the erodibility parameter values obtained by the commonly used Erosion Function apparatus. This paper collected a database of 177 erosion function apparatus tests to indicate the variability of all erodibility parameters; the range of erodibility parameters is determined by data statistics and parameter theoretical value derivation. The critical shear stress (τc) and erodibility coefficient (Z0) in the over-shear stress model have a positive proportional relationship when the data samples are sufficient. However, there is no such relationship between the erodibility coefficient (b0) and erodibility coefficient (b1) in the Wilson model. It is necessary to express the soil erosion resistance by considering all erosion parameters in the erosion model. Equations relating erodibility parameters to water content, plasticity index, and median particle size were developed by regression analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.