Artemisinin and its derivatives (artemisinins) are first‐line chemotherapeutic agents of lethal malaria, which also showed tremendous value in many other diseases including chronic inflammation. Unfortunately, almost all artemisinins are rapid‐acting medicines with an extremely short half‐life in vivo, which significantly limits their clinical application for these new adaptation diseases. In this study, a locally injectable long‐acting gene/artemisinin co‐delivery nano‐microplex consisting of a biodegradable hyaluronic acid (HA) microsphere and releasable gene/artemisinin co‐delivery nano‐lipoplex is developed first, to obtain an improved efficacy for rheumatoid arthritis (RA). Briefly, a cationic multicomponent drug‐embedded liposome with pharmacological activity is first reported based on two novel artemisinin derivatives (dAPC and dACC), which possess mimic phospholipids and cationic lipids, respectively. A cationic artemisinin‐embedded lipoplex is first reported as a medicative gene carrier here. An in situ injectable TNF‐α siRNA/artemisinin co‐delivery nano‐microplex (MTAsi@MG) is further prepared by immobilization of TNF‐α siRNA/lipoplex on porous microfluidic HA microspheres. Using this nano‐microplex for intra‐articular injection, the sustaining activity of gene therapy and artemisinin efficacy for RA long‐term treatment is first realized. Undoubtedly, this intra‐articular injectable TNF‐α siRNA/artemisinin co‐delivery nano‐microplex based on dAPC/dACC lipoplex and microfluidic microspheres would be one of the most potent gene/drug co‐delivery systems for RA therapy.
Introduction: Gene therapy is becoming increasingly common in clinical practice, giving hope for the correction of a wide range of human diseases and defects. The CRISPR/Cas9 system, consisting of the Cas9 nuclease and single-guide RNA (sgRNA), has revolutionized the field of gene editing. However, how to efficiently deliver the CRISPR-Cas9 to the target organ or cell remains a significant challenge. In recent years, with rapid advances in nanoscience, materials science, and medicine, researchers have developed a variety of technologies that can deliver CRISPR-Cas9 in different forms for in vitro and in vivo gene editing. Here, we review the development of the CRISPR-Cas9 and describe the delivery forms and the vectors that have emerged in CRISPR-Cas9 delivery, summarizing the key barriers and the promising strategies that vectors currently face in delivering the CRISPR-Cas9. Areas covered:With the rapid development of CRISPR-Cas9, delivery methods are becoming increasingly important in the in vivo delivery of CRISPR-Cas9.Expert opinion: CRISPR-Cas9 is becoming increasingly common in clinical trials.However, the complex nuclease and protease environment is a tremendous challenge for in vivo clinical applications. Therefore, the development of delivery methods is highly likely to take the application of CRISPR-Cas9 technology to another level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.