High-precision and large-aperture optical components have important applications in modern optics and optoelectronics. However, the traditional continuous polishing technology of optical components relies heavily on the processing experience of the processing personnel. The surface shape of the pitch lap is judged by frequent offline measurement of the surface shape of the processing workpiece, and then the processing personnel judges how to adjust the next process parameters through their own experience, which leads to uncertainty of processing time and low processing efficiency. In this paper, based on the historical processing data, including the surface parameters of workpieces and process parameters before and after each processing, a machine learning-based prediction method of process parameters is proposed. At first, taking the surface shape of the pitch lap as the hidden parameter of the model, a time-series mathematical model of the forward and reverse processing processes is constructed. Theoretical and experimental results show that the prediction method in this paper can effectively reduce the processing time and improve the stability of the workpiece quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.