Reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicles (UAV) have been extensively studied on the Internet of Things (IoT) systems to improve communication performance. In this paper, we aimed to counter simultaneous jamming and eavesdropping attacks by jointly designing an active beamforming vector at the base station (BS) and reflect phase shifts at the RIS. Specifically, considering imperfect angular channel state information (CSI), the sum secrecy rate maximization problem in the worst case could be formulated, which is NP-hard and non-convex. To address this problem, we improved the robust enhanced signal-to-leakage-and-noise ratio (E-SLNR) beamforming to reduce the computational complexity and mitigate the impact of interference, eavesdropping and jamming. Furthermore, a genetic algorithm with a tabu search (GA-TS) method was proposed to efficiently obtain an approximate optimal solution. The simulation results demonstrated that the proposed GA-TS method converged faster with better results than conventional GA, while the proposed robust scheme could achieve higher sum secrecy rates than the zero-forcing (ZF) and SLNR schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.