Recent studies have revealed the cytoprotective roles of microRNAs (miRNAs) miR-21 and miR-146a against ischemic cardiac injuries. While these studies investigated each of these miRNAs as an independent individual factor, our previous study has suggested the possible interaction between these two miRNAs. The present study was designed to investigate this possibility by evaluating the effects of miR-21 and miR-146a combination on cardiac ischemic injuries and the underlying mechanisms. MiR-21 and miR-146a synergistically decreased apoptosis under ischemia/hypoxic conditions in cardiomyocytes compared with either miR-21 or miR-146a alone. Mice coinjected with agomiR-21 and agomiR-146a had decreased infarct size, increased ejection fraction (EF), and fractional shortening (FS). These effects were greater than those induced by either of the two agomiRs. Furthermore, greater decreases in p38 mitogen-associated protein kinase phosphorylation (p-p38 MAPK) were observed with miR-21: miR-146a combination as compared to application of either of the miRNAs. These data suggest that combination of miR-21 and miR-146a has a greater protective effect against cardiac ischemia/hypoxia-induced apoptosis as compared to these miRNAs applied individually. This synergistic action is mediated by enhanced potency of inhibition of cardiomyocyte apoptosis by the miR-21—PTEN/AKT—p-p38—caspase-3 and miR-146a—TRAF6—p-p38—caspase-3 signal pathways.
BACKGROUND AND PURPOSEAtrial metabolic remodelling is critical for the process of atrial fibrillation (AF). The PPAR-α/sirtuin 1 /PPAR co-activator α (PGC-1α) pathway plays an important role in maintaining energy metabolism. However, the effect of the PPAR-α agonist fenofibrate on AF is unclear. Therefore, the aim of this study was to determine the effect of fenofibrate on atrial metabolic remodelling in AF and explore its possible mechanisms of action. EXPERIMENTAL APPROACHThe expression of metabolic proteins was examined in the left atria of AF patients. Thirty-two rabbits were divided into sham, AF (pacing with 600 beats·min À1 for 1 week), fenofibrate treated (pretreated with fenofibrate before pacing) and fenofibrate alone treated (for 2 weeks) groups. HL-1 cells were subjected to rapid pacing in the presence or absence of fenofibrate, the PPAR-α antagonist GW6471 or sirtuin 1-specific inhibitor EX527. Metabolic factors, circulating biochemical metabolites, atrial electrophysiology, adenine nucleotide levels and accumulation of glycogen and lipid droplets were assessed. KEY RESULTSThe PPAR-α/sirtuin 1/PGC-1α pathway was significantly inhibited in AF patients and in the rabbit/HL-1 cell models, resulting in a reduction of key downstream metabolic factors; this effect was significantly restored by fenofibrate. Fenofibrate prevented the alterations in circulating biochemical metabolites, reduced the level of adenine nucleotides and accumulation of glycogen and lipid droplets, reversed the shortened atrial effective refractory period and increased risk of AF. CONCLUSION AND IMPLICATIONSFenofibrate inhibited atrial metabolic remodelling in AF by regulating the PPAR-α/sirtuin 1/PGC-1α pathway. The present study may provide a novel therapeutic strategy for AF. AbbreviationsAcAc, acetoacetate; AERP, atrial effective refractory period; AF, atrial fibrillation; BOH, β-hydroxybutyrate; FFA, free fatty acid; GLUT4, glucose transporter 4; GS1, glycogen synthase1; H-FABP, heart fatty acid binding protein; MCAD, medium-chain acylCoA dehydrogenase; mCPT-1, mitochondrial carnitine palmitoyltransferase1; PDH, pyruvate dehydrogenase; PDK4, pyruvate dehydrogenase kinase 4; PGC-1α, PPAR co-activator 1α; p-GS1, phosphorylated-GS1; TKB, total ketone body
Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood.Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs.Results: Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs.Conclusion: BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.