Design randomizations and spatial corrections have increased understanding of genotypic, spatial, and residual effects in field experiments, but precisely measuring spatial heterogeneity in the field remains a challenge. To this end, our study evaluated approaches to improve spatial modeling using high-throughput phenotypes (HTP) via unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index (NDVI) was measured by a multi-spectral MicaSense camera and ImageBreed. Contrasting to baseline agronomic trait spatial correction and a baseline multi-trait model, a two-stage approach that quantified NDVI local environmental effects (NLEE) was proposed. Firstly, NLEE were separated from additive genetic effects over the growing season using two-dimensional spline (2DSpl), separable autoregressive (AR1) models, or random regression models (RR). Secondly, the NLEE were leveraged within agronomic trait genomic best linear unbiased prediction (GBLUP) either modeling an empirical covariance for random effects, or by modeling fixed effects as an average of NLEE across time or split among three growth phases. Modeling approaches were tested using simulation data and Genomes-to-Fields (G2F) hybrid maize (ZeamaysL.) field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear height. The two-stage approach improved heritability, model fit, and genotypic effect estimation compared to all baseline models. Electrical conductance and elevation from a 2019 soil survey significantly improved model fit, while 2DSpl NLEE were most correlated to the soil parameters and grain yield 2DSpl effects. Simulation of field effects demonstrated improved specificity for RR models. In summary, NLEE increased experimental accuracy and understanding of field spatio-temporal heterogeneity.
For efficient mechanical harvesting, low grain moisture content at harvest time is essential. Dry-down rate (DR), which refers to the reduction in grain moisture content after the plants enter physiological maturity, is one of the main factors affecting the amount of moisture in the kernels. Dry-down rate is estimated using kernel moisture content at physiological maturity and at harvest time; however, measuring kernel water content at physiological maturity, which is sometimes referred as kernel water content at black layer formation (BWC), is time-consuming and resource-demanding. Therefore, inferring BWC from other correlated and easier to measure traits could improve the efficiency of breeding efforts for dry-down-related traits. In this study, multi-trait genomic prediction models were used to estimate genetic correlations between BWC and water content at harvest time (HWC) and flowering time (FT). The results show there is moderate-to-high genetic correlation between the traits (0.24–0.66), which supports the use of multi-trait genomic prediction models. To investigate genomic prediction strategies, several cross-validation scenarios representing possible implementations of genomic prediction were evaluated. The results indicate that, in most scenarios, the use of multi-trait genomic prediction models substantially increases prediction accuracy. Furthermore, the inclusion of historical records for correlated traits can improve prediction accuracy, even when the target trait is not measured on all the plots in the training set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.