We are at a point in history marked by unprecedented changes in the environmental foundations of human health and well-being. At the same time, the demands from human populations have never been greater, with profound differences in how we engage with the natural environment. By the middle of this century, when climate change impacts are further increasing, the United Nations expects the global population to be approaching 10 billion. In this chapter, we provide a synthesis of published evidence of the complex and important relationships between elements of biodiversity, health and climate change. We draw primarily on reviews conducted in the past five years supplemented with evidence on additional themes. We also develop a detailed case study example focused on urban climate, climate change and biodiversity, taken from the perspective of a large and representative conurbation. The case study uses a body of existing published evidence together with new data and insights to demonstrate important pathways, impacts and outcomes. We end by identifying a set of research questions and stress the need for even more extensive multidisciplinary and multi-sector approaches. Nevertheless, despite the need for more knowledge, it is already clear that more effective action could, and should, be taken.
A biodiverse natural environment is a health-promoting resource. A given habitat can simultaneously provide multiple ecosystem (and therefore health) benefits, both directly through, for example, flood risk mitigation and cooling, and indirectly as a resource for cultural and physical activities. The single biggest priority for public health is to work across governments and countries to protect biodiverse natural resources and introduce measures to stem climate change. At a more local level, public health professionals are responsible for devising strategies to promote sustainable lifestyles and facilitate access to natural environments. Modern public health emphasises the reduction of avoidable differences in ill health between the most and least well-off in society. Such strategies therefore need to target those from socioeconomically deprived areas, who are most at risk of ill health. Schemes such as nature-based social prescribing or community referral give local commissioners of health services the opportunity to bring people into contact with nature. Those with responsibility for the provision of nature-based schemes should be encouraged to use interventions that bring people into active, rather than passive, contact with nature. Further, targeting such interventions towards exposure to environments with the greatest biodiversity is likely to offer the greatest benefits for human health.
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.