The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range 20 to 75 years). Somatic mutations accumulated with age and were mainly caused by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and ageing.
The nuclear magnetic resonance structure of a covalently linked pair of calcium-binding (cb) epidermal growth factor-like (EGF) domains from human fibrillin-1, the protein defective in the Marfan syndrome, is described. The two domains are in a rigid, rod-like arrangement, stabilized by interdomain calcium binding and hydrophobic interactions. We propose a model for the arrangement of fibrillin monomers in microfibrils that reconciles structural and antibody binding data, and we describe a set of disease-causing mutations that provide the first clues to the specificity of cbEFG interactions. The residues involved in stabilizing the domain linkage are highly conserved in fibrillin, fibulin, thrombomodulin, and the low density lipoprotein receptor. We propose that the relative orientation of tandem cbEGF domains in these proteins is similar, but that in others, including Notch, pairs adopt a completely different conformation.
Various diverse extracellular proteins possess Ca(2+)-binding epidermal growth factor (EGF)-like domains, the function of which remains uncertain. We have determined, at high resolution (1.5 A), the crystal structure of such a domain, from human clotting factor IX, as a complex with Ca2+. The Ca2+ ligands form a classic pentagonal bipyramid with six ligands contributed by one polypeptide chain and the seventh supplied by a neighboring EGF-like domain. The crystal structure identifies the role of Ca2+ in maintaining the conformation of the N-terminal region of the domain, but more importantly demonstrates that Ca2+ can directly mediate protein-protein contacts. The observed crystal packing of the domains provides a plausible model for the association of multiple tandemly linked EGF-like domains in proteins such as fibrillin-1, Notch, and protein S. This model is consistent with the known functional data and suggests a general biological role for these domains.
Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.
The Notch receptor and its ligands are key components in a core metazoan signaling pathway that regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulfide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the X-ray structure of a receptor binding region of a Notch ligand, the DSL-EGF3 domains of human Jagged-1 (J-1(DSL-EGF3)). The structure reveals a highly conserved face of the DSL domain, and we show, by functional analysis of Drosophila melanogster ligand mutants, that this surface is required for both cis- and trans-regulatory interactions with Notch. We also identify, using NMR, a surface of Notch-1 involved in J-1(DSL-EGF3) binding. Our data imply that cis- and trans-regulation may occur through the formation of structurally distinct complexes that, unexpectedly, involve the same surfaces on both ligand and receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.