Cloud and atmospheric properties strongly influence the mass and energy budgets of the Greenland Ice Sheet (GIS). To address critical gaps in the understanding of these systems, a new suite of cloud- and atmosphere-observing instruments has been installed on the central GIS as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project. During the first 20 months in operation, this complementary suite of active and passive ground-based sensors and radiosondes has provided new and unique perspectives on important cloud?atmosphere properties. High atop the GIS, the atmosphere is extremely dry and cold with strong near-surface static stability predominating throughout the year, particularly in winter. This low-level thermodynamic structure, coupled with frequent moisture inversions, conveys the importance of advection for local cloud and precipitation formation. Cloud liquid water is observed in all months of the year, even the particularly cold and dry winter, while annual cycle observations indicate that the largest atmospheric moisture amounts, cloud water contents, and snowfall occur in summer and under southwesterly flow. Many of the basic structural properties of clouds observed at Summit, Greenland, particularly for low-level stratiform clouds, are similar to their counterparts in other Arctic regions. The ICECAPS observations and accompanying analyses will be used to improve the understanding of key cloud?atmosphere processes and the manner in which they interact with the GIS. Furthermore, they will facilitate model evaluation and development in this data-sparse but environmentally unique region
Middle to upper tropospheric humidity plays a large role in determining terrestrial outgoing longwave radiation. Much work has gone into improving the accuracy of humidity measurements made by radiosondes. Some radiosonde humidity sensors experience a dry bias caused by solar heating. During the austral summers of 2002/03 and 2003/04 at Dome C, Antarctica, Vaisala RS90 radiosondes were launched in clear skies at solar zenith angles (SZAs) near 83°and 62°. As part of this field experiment, the Polar Atmospheric Emitted Radiance Interferometer (PAERI) measured downwelling spectral infrared radiance. The radiosonde humidity profiles are used in the simulation of the downwelling radiances. The radiosonde dry bias is then determined by scaling the humidity profile with a height-independent factor to obtain the best agreement between the measured and simulated radiances in microwindows between strong water vapor lines from 530 to 560 cm Ϫ1 and near line centers from 1100 to 1300 cm Ϫ1. The dry biases, as relative errors in relative humidity, are 8% Ϯ 5% (microwindows; 1) and 9% Ϯ 3% (line centers) for SZAs near 83°; they are 20% Ϯ 6% and 24% Ϯ 5% for SZAs near 62°. Assuming solar heating is minimal at SZAs near 83°, the authors remove errors that are unrelated to solar heating and find the solar-radiation dry bias of 9 RS90 radiosondes at SZAs near 62°to be 12% Ϯ 6% (microwindows) and 15% Ϯ 5% (line centers). Systematic errors in the correction are estimated to be 3% and 2% for microwindows and line centers, respectively. These corrections apply to atmospheric pressures between 650 and 200 mb.
Vertical profiles of black carbon (BC) and other light-absorbing impurities were measured in seasonal snow and permanent snowfields in the Chilean Andes during Austral winters 2015 and 2016, at 22 sites between latitudes 18°S and 41°S. The samples were analyzed for spectrally-resolved visible light absorption. For surface snow, the average mass mixing ratio of BC was 15 ng/g in northern Chile (18–33°S), 28 ng/g near Santiago (a major city near latitude 33°S, where urban pollution plays a significant role), and 13 ng/g in southern Chile (33–41°S). The regional average vertically-integrated loading of BC was 207 µg/m 2 in the north, 780 µg/m 2 near Santiago, and 2500 µg/m 2 in the south, where the snow season was longer and the snow was deeper. For samples collected at locations where there had been no new snowfall for a week or more, the BC concentration in surface snow was high (~10–100 ng/g) and the sub-surface snow was comparatively clean, indicating the dominance of dry deposition of BC. Mean albedo reductions due to light-absorbing impurities were 0.0150, 0.0160, and 0.0077 for snow grain radii of 100 µm for northern Chile, the region near Santiago, and southern Chile; respective mean radiative forcings for the winter months were 2.8, 1.4, and 0.6 W/m 2 . In northern Chile, our measurements indicate that light-absorption by impurities in snow was dominated by dust rather than BC.
[1] We define a surface normal roughness metric for mesoscopically rough ice facets and present methods for inferring its value from variable pressure scanning electron micrographs. The methods rely on the anisotropic morphology of roughening in the prismatic plane, in which nearly all the variation in surface height occurs in the direction of the main symmetry axis of hexagonal-habit ice prisms. Because of this symmetry, roughening appears at boundaries between prismatic facets in a way that readily permits quantitative analysis. Prismatic surfaces of four ice crystals grown between À45 and À30 C are found to have mean surface normal roughness values of 0.04-0.1, a range that corresponds to Cox-Munk roughness scale parameters 0.3-0.5. The distribution of tilt angles also suggests a Weibull shape parameter smaller than unity, a result that compares favorably with field observations. Shortwave scattering calculations of hexagonal polyhedra with surface morphologies derived from these observations indicate substantial retention of the well-known 22 halo, despite a large (4-6%) reduction in the asymmetry parameter compared to smooth-surface counterparts. We argue that this signature is a generic outcome of the symmetry of the roughening, which in turn originates in the anisotropic surface self-diffusivity of these facets.
[1] It is now well understood that the Arctic is particularly sensitive to climate change. Arctic sea ice is already undergoing significant changes. Some of the recent decrease in sea ice extent is due to changes in the surface energy budget, including the effect of clouds. Accurate ground-based measurements of atmospheric and cloud properties are valuable for estimating components of the surface energy budget. In this paper, measurements made between 2006 and 2008 at the Canadian Network for the Detection of Arctic Change (CANDAC) site at Eureka, Nunavut, Canada (80 N, 86 W) and the Atmospheric Radiation Measurement (ARM) program site at Barrow, Alaska (71 N, 156 W) are used to examine differences in the atmospheres over the two sites, including the temperature, humidity, winds, and the downwelling longwave radiation flux. A method is developed to convert infrared radiances to downwelling longwave fluxes since broadband measurements of flux were not available at Eureka during the study period; the method is validated by comparing the fluxes at Barrow to independent measurements made by a pyrgeometer.Comparisons of the derived fluxes show significant differences between the two sites. Eureka is consistently colder and drier than Barrow, and the infrared effect of clouds on the surface energy budget is less. To examine the meteorological conditions that cause such differences, the ERA-Interim reanalysis model is used; it is chosen over other models because it provides the best reproduction of longwave radiation at the surface. We find that the location of Eureka predisposes it to cold and dry air masses from the central Arctic Ocean and the Greenland Ice Sheet. In contrast, the air masses at Barrow come from a variety of directions, some of which are relatively warm and moist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.