Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test
Lung cancer has the highest mortality rate of all of the cancers in the world and asbestos-related lung cancer is one of the leading occupational cancers. The identification of asbestos-related molecular changes has long been a topic of increasing research interest. The aim of this study was to identify novel asbestos-related molecular correlates by integrating miRNA expression profiling with previously obtained profiling data (aCGH and mRNA expression) from the same patient material. miRNA profiling was performed on 26 tumor and corresponding normal lung tissue samples from highly asbestos-exposed and non-exposed patients, and on eight control lung tissue samples. Data analyses on miRNA expression, and integration of miRNA and previously obtained mRNA data were performed using Chipster. A separate analysis was used to integrate miRNA and previously obtained aCGH data. Both known and new lung cancer-associated miRNAs and target genes with inverse correlation were discovered. Furthermore, DNA copy number alterations (e.g., gain at 12p13.31) were correlated with the deregulated miRNAs. Specifically, thirteen novel asbestos-related miRNAs (over-expressed: miR-148b, miR-374a, miR-24-1*, Let-7d, Let-7e, miR-199b-5p, miR-331-3p, and miR-96 and under-expressed: miR-939, miR-671-5p, miR-605, miR-1224-5p and miR-202) and inversely correlated target genes (e.g., GADD45A, LTBP1, FOSB, NCALD, CACNA2D2, MTSS1, EPB41L3) were identified. In addition, over-expression of the well known squamous cell carcinoma-associated miR-205 was linked to down-regulation of the DOK4 gene. The miRNAs/genes presented here may represent interesting targets for further investigation and could eventually have potential diagnostic implications.
Silver nanoparticles (AgNPs) are widely utilized in various consumer products and medical devices, especially due to their antimicrobial properties. However, several studies have associated these particles with toxic effects, such as inflammation and oxidative stress in vivo and cytotoxic and genotoxic effects in vitro. Here, we assessed the genotoxic effects of AgNPs coated with polyvinylpyrrolidone (PVP) (average diameter 42.5±14.5 nm) on human bronchial epithelial BEAS 2B cells in vitro. AgNPs were dispersed in bronchial epithelial growth medium (BEGM) with 0.6 mg/ml bovine serum albumin (BSA). The AgNP were partially well-dispersed in the medium and only limited amounts (ca. 0.02 μg Ag(+) ion/l) could be dissolved after 24h. The zeta-potential of the AgNPs was found to be highly negative in pure water but was at least partially neutralized in BEGM with 0.6 mg BSA/ml. Cytotoxicity was measured by cell number count utilizing Trypan Blue exclusion and by an ATP-based luminescence cell viability assay. Genotoxicity was assessed by the alkaline single cell gel electrophoresis (comet) assay, the cytokinesis-block micronucleus (MN) assay, and the chromosomal aberration (CA) assay. The cells were exposed to various doses (0.5-48 μg/cm(2) corresponding to 2.5-240 μg/ml) of AgNPs for 4 and 24 h in the comet assay, for 48 h in the MN assay, and for 24 and 48 h in the CA assay. DNA damage measured by the percent of DNA in comet tail was induced in a dose-dependent manner after both the 4-h and the 24-h exposures to AgNPs, with a statistically significant increase starting at 16 μg/cm(2) (corresponding to 60.8 μg/ml) and doubling of the percentage of DNA in tail at 48 μg/cm(2). However, no induction of MN or CAs was observed at any of the doses or time points. The lack of induction of chromosome damage by the PVP-coated AgNPs is possibly due to the coating which may protect the cells from direct interaction with the AgNPs, either by reducing ion leaching from the particles or by causing extensive agglomeration of the nanoparticles, with a possible reduction of the cellular uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.