A cancer treatment is described in which i.m. injection of plasmid DNA (pDNA) encoding murine interferon ␣ (mIFN-␣) leads to potent antitumor effects on primary and metastatic tumors in mice. Mice bearing s.c. B16F10 melanoma, Cloudman melanoma, or glioma 261 tumors were injected i.m. with mIFN-␣ pDNA. In all three tumor models, a significant reduction in tumor volume and enhancement of survival was found after IFN pDNA therapy. The mIFN-␣ pDNA could be injected as infrequently as once every other week and still produce a significant antitumor effect, and, in a metastatic tumor model, the therapy markedly reduced the number of lung tumor metastases. Depletion of immune cell subsets indicated that CD8 ؉ T cells were required for the antitumor response. These studies demonstrate that primary and metastatic tumors can be treated systemically by i.m. injection of a plasmid encoding a cytokine gene.
MuStDO 5 is a multivalent plasmid DNA vaccine for malaria comprised of five plasmid DNAs encoding five proteins from Plasmodium falciparum and one plasmid DNA encoding human GM-CSF. To evaluate the safety of MuStDO 5, a series of pre-clinical studies were conducted in mice and rabbits. In pharmacology studies in mice, GM-CSF could not be detected in the serum following either intramuscular or a combined intramuscular/intradermal administration of the vaccine, but was readily detected in the muscle following
We have evaluated whether i.p. murine ovarian tumors could be treated with an IL-2 plasmid DNA complexed with the cationic lipid, (±)-N-(2-hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide/dioleoylphosphatidylethanolamine (DMRIE/DOPE). Reporter gene studies were initially conducted in which mice bearing i.p. murine ovarian teratocarcinoma (MOT) were injected i.p. with reporter gene plasmid DNA (pDNA):DMRIE/DOPE. Histochemical analyses revealed that transfection occurred primarily in the tumor cells of the ascites, with only a minority of other ascitic cells or surrounding tissues transfected. IL-2 levels in the MOT ascites were determined after i.p. injection of either IL-2 pDNA:DMRIE/DOPE or recombinant IL-2 protein. IL-2 was detected in tumor ascites for up to 10 days after a single i.p. injection of IL-2 pDNA:DMRIE/DOPE, but was undetectable 24 h after a single i.p. injection of IL-2 protein. In an antitumor efficacy study, MOT tumor-bearing mice injected i.p. with IL-2 pDNA:DMRIE/DOPE on days 5, 8, and 11 after tumor cell implant had a significant inhibition of tumor ascites (p = 0.001) as well as a significant increase in survival (p = 0.008). A cytokine profile of the MOT tumor ascites revealed that mice treated with IL-2 pDNA:DMRIE/DOPE had an IL-2-specific increase in the levels of IFN-γ and GM-CSF. Taken together, these findings indicate that i.p. treatment of ovarian tumors with IL-2 pDNA:DMRIE/DOPE can lead to an increase in local IL-2 levels, a change in the cytokine profile of the tumor ascites, and a significant antitumor effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.